精英家教网 > 初中数学 > 题目详情
如图,已知∠DAB+∠ABC+∠BCE=360°.
(1)说明AD与CE的位置关系,并说明理由;
(2)求证:∠ABC=∠BAH+∠BCG.
分析:(1)过点B作BF∥CE,根据∠BCE+∠CBF=180°,∠DAB+∠ABC+∠BCE=360°,得出∠BAD+∠ABF=180°,AD∥BF,即可得出答案,
(2)根据BF∥CE,得出∠BCG=∠CBF,根据AD∥BF,得出∠BAH=∠ABF,最后根据∠CBF+∠ABF=∠BCG+∠BAH,即可得出答案.
解答:解:(1)过点B作BF∥CE,
则∠BCE+∠CBF=180°,
∵∠DAB+∠ABC+∠BCE=360°,
∴∠BAD+∠ABF=180°,
∴AD∥BF,
∴AD∥CE;

(2)∵BF∥CE,
∴∠BCG=∠CBF,
∵AD∥BF,
∴∠BAH=∠ABF,
∴∠CBF+∠ABF=∠BCG+∠BAH,
∴∠ABC=∠BAH+∠BCG.
点评:此题考查了平行线的判定与性质,解答此题的关键是作出辅助线,注意平行线的性质和判定定理的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知∠DAB=∠CBA,则再添加条件
AD=BC或∠C=∠D或∠CAB=∠ABD
,可得到△ABC≌△BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95.
(1)求∠DCA的度数;(2)求∠DCE的度数;(3)求∠BCA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠DAB=∠CAE,请你添加一个适当的条件,使△ADE∽△ABC,你添加的条件是
∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE
∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE

查看答案和解析>>

科目:初中数学 来源: 题型:

 如图,已知∠DAB+∠CDA=180°,∠DCB=40°,则∠ABC=
140°
140°

查看答案和解析>>

同步练习册答案