精英家教网 > 初中数学 > 题目详情
19.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,与y轴相交于点C,请完成下面的填空:
(1)该抛物线的解析式为y=-x2-2x+3.
(2)在该抛物线的对称轴上存在点Q,使得△QAC的周长最小,则Q点的坐标为(-1,2).
(3)在抛物线上的第二象限上存在一点P,使△PBC的面积最大,则点P的坐标为(-$\frac{3}{2}$,$\frac{15}{4}$),△PBC的最大面积为$\frac{27}{8}$.

分析 (1)利用待定系数法,把问题转化为解方程组即可.
(2)如图1中,连接BC交对称轴于Q,此时AQ+QC最小,即△QAC的周长最小,求出直线BC的解析式即可解决问题.
(3)如图2中,设P(m,-m2-2m+3),作PM∥轴,交BC于M.则M(m,m+3).构建二次函数,利用二次函数的性质即可解决问题.

解答 解:(1)∵抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,
∴$\left\{\begin{array}{l}{-1+b+c=0}\\{-9-3b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-2}\\{c=3}\end{array}\right.$,
∴抛物线的解析式为y=-x2-2x+3.
故答案为y=-x2-2x+3.

(2)如图1中,连接BC交对称轴于Q,此时AQ+QC最小,即△QAC的周长最小,

设最小BC的解析式为y=kx+b,则有$\left\{\begin{array}{l}{b=3}\\{-3k+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$,
∴直线BC的解析式为y=x+3,
∵抛物线的对称轴x=-1,
∴Q(-1,2).
故答案为(-1,2).

(3)如图2中,设P(m,-m2-2m+3),作PM∥轴,交BC于M.则M(m,m+3).

S△PBC=$\frac{1}{2}$•PM•3=$\frac{3}{2}$(-m2-2m+3-m-3)=-$\frac{3}{2}$(m+$\frac{3}{2}$)2+$\frac{27}{8}$,
∵-$\frac{3}{2}$<0,
∴当m=-$\frac{3}{2}$时,△PBC的面积最大,最大值为$\frac{27}{8}$,此时点P(-$\frac{3}{2}$,$\frac{15}{4}$).
故答案为(-$\frac{3}{2}$,$\frac{15}{4}$),$\frac{27}{8}$.

点评 本题考查二次函数综合题、一次函数的应用、轴对称-最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用对称解决最小值问题,学会构建二次函数,利用二次函数的性质解决实际问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,水平放着的圆柱形排水管的截面,水深EC=8cm,水面宽AB=24cm,则圆柱形排水管的半径为13cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知二次函数y=(x-3)2-1,下列说法:
①其图象的开口向上;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,1);④当x<3,y随x的增大而减小.
则其中说法正确的序号是①④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.方程x2=4的解为(  )
A.x=2B.x=-2C.x=2或x=-2D.x=4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值
已知:A=4x2-4xy+y2,B=x2+xy-5y2
求(3A-2B)-(2A+B)的值,其中x=-5,y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算-$\frac{2}{7}$+(-$\frac{5}{7}$)的正确结果是-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知等腰三角形的周长为12cm,腰长为5cm,则底边长为2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若$\frac{7}{x}$=$\frac{9}{y}$,则x:y=7:9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数大11,设个位数字为x,则方程为(  )
A.x2+(x-4)2=10(x-4)+x-11B.x2+(x-4)2=10(x-4)+x+11
C.x2+(x+4)2=10(x+4)+x-11D.x2+(x+4)2=10(x+4)+x+11

查看答案和解析>>

同步练习册答案