分析 (1)由在边长为4的菱形ABCD中,BD=4,易得△ABD、△CBD都是边长为4的正三角形,继而证得△BDE≌△BCF(SAS),则可证得结论;
(2)由△BDE≌△BCF,易证得△BEF是正三角形,继而可得当动点E运动到点D或点A时,BE的最大,当BE⊥AD,即E为AD的中点时,BE的最小,此时△BEF的面积最小.
解答 解:(1)BE=BF,证明如下:
∵四边形ABCD是边长为4的菱形,BD=4,
∴△ABD、△CBD都是边长为4的正三角形,
∵AE+CF=4,
∴CF=4-AE=AD-AE=DE,
又∵BD=BC=4,∠BDE=∠C=60°,
在△BDE和△BCF中,
$\left\{\begin{array}{l}{DE=DF}\\{∠BDE=∠C}\\{BD=BC}\end{array}\right.$,
∴△BDE≌△BCF(SAS),
∴BE=BF;
(2)∵△BDE≌△BCF,
∴∠EBD=∠FBC,
∴∠EBD+∠DBF=∠FBC+∠DBF,
∴∠EBF=∠DBC=60°,
又∵BE=BF,
∴△BEF是正三角形,
∴EF=BE=BF,
当BE⊥AD,即E为AD的中点时,BE的最小值为$\sqrt{3}$,
此时△BEF的面积为$\frac{\sqrt{3}}{4}$•($\sqrt{3}$)2=$\frac{3\sqrt{3}}{4}$.
点评 此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△BDE≌△BCF是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | y1<y2 | B. | y1≥y2 | C. | y1>y2 | D. | y1≤y2 |
查看答案和解析>>
科目:初中数学 来源:2016-2017学年广东省揭阳市八年级下学期第一次月考数学试卷(解析版) 题型:单选题
已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A. 8或10 B. 8 C. 10 D. 6或12
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 84 | B. | 36 | C. | 54 | D. | 72 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 逐渐变大 | B. | 不变 | C. | 逐渐变小 | D. | 先变小后变大 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com