分析 首先根据题意可知AC=CB,DC=EC,再根据HL定理证明Rt△ACD≌Rt△BCE,可得到AD=BE.
解答 解:D,E与路段AB的距离相等,
理由:∵点C是路段AB的中点,
∴AC=CB,
∵两人从C同时出发,以相同的速度分别沿两条直线行走,
∴DC=EC,
∵DA⊥AB,EB⊥AB,
∴∠A=∠B=90°,
在Rt△ACD和Rt△BCE中
∵$\left\{\begin{array}{l}{AC=CB}\\{CD=CE}\end{array}\right.$,
∴Rt△ACD≌Rt△BCE(HL),
∴AD=BE.
点评 此题主要考查了全等三角形的判定与性质,解决此题的关键是证明Rt△ACD≌Rt△BCE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com