精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的对角线AC与BD相交于点M,正方形MNPQ与正方形ABCD全等,射线MN与MQ不过A、B、C、D四点且分别交ABCD的边于E、F两点,
(1)求证:ME=MF;
(2)若将原题中的正方形改为矩形,且BC=2AB=4,其他条件不变,探索线段ME与线段MF的数量关系.
精英家教网
分析:(1)求简单的线段相等,可证线段所在的三角形全等;故M分别作MG⊥BC于G,MH⊥CD于H,易得MG=MH,而∠EMG、∠FMH都是∠GMF的余角,由此可证得∠EMG=∠FMH,即可证得△MGE≌△MHF,由此得证.
(2)此题要分四种情况讨论:
①当MN交BC于点E,MQ交CD于点F时;此种情况与(1)类似,不同的是(1)题用到的是全等,而此题运用的是相似,过点M作MG⊥BC于点G,MH⊥CD于点H,通过证△MGE∽△MHF,得到关于ME、MF、MG、MH的比例关系式,联立矩形的性质及BC、AB的比例关系,即可求得ME、MF的比例关系;
②当MN的延长线交AB于点E,MQ交BC于点F时.解法同①;
③当MN、MQ两边都交边BC于E、F时,过M作MH⊥BC于H,由于M是AC的中点,且已知AB的长,即可求得MH=1,在Rt△EMF中,MH⊥EF,易证得△MEH∽△FEM,△FMH∽△FEM.可得
ME
FE
=
MH
FM
FM
FE
=
MH
EM
.将MH=1代入上述两式,然后联立勾股定理即可得到ME、MF的关系式;
④当MN交BC边于E点,MQ交AD于点F时.可延长EM交BC于G,易证得△MED≌△MGB,即可得ME=MG,那么这种情况下与③完全相同,即可得解.
解答:精英家教网(1)证明:过点M作MG⊥BC于点G,MH⊥CD于点H.
∴∠MGE=∠MHF=90°.
∵M为正方形对角线AC、BD的交点,∴MG=MH.
又∵∠1+∠GMQ=∠2+∠GMQ=90°,
∴∠1=∠2.
在△MGE和△MHF中
∠1=∠2,
MG=MH,
∠MGE=∠MHF.
∴△MGE≌△MHF.
∴ME=MF.(3分)

(2)解:①当MN交BC于点E,MQ交CD于点F时.精英家教网
过点M作MG⊥BC于点G,MH⊥CD于点H.
∴∠MGE=∠MHF=90°.
∵M为矩形对角线AC、BD的交点,
∴∠1+∠GMQ=∠2+∠GMQ=90°.
∴∠1=∠2.
在△MGE和△MHF中,
∠1=∠2
∠MGE=∠MHF
∴△MGE∽△MHF.
ME
MF
=
MG
MH

∵M为矩形对角线AB、AC的交点,∴MB=MD=MC
又∵MG⊥BC,MH⊥CD,∴点G、H分别是BC、DC的中点.
∵BC=2AB=4,
MG=
1
2
AB,MH=
1
2
BC

ME
MF
=
1
2
.(4分)
②当MN的延长线交AB于点E,MQ交BC于点F时.
精英家教网过点M作MG⊥AB于点G,MH⊥BC于点H.
∴∠MGE=∠MHF=90°.
∵M为矩形对角线AC、BD的交点,
∴∠1+∠GMQ=∠2+∠GMQ=90°.
∴∠1=∠2.
在△MGE和△MHF中,
∠1=∠2,
∠MGE=∠MHF.
∴△MGE∽△MHF.
ME
MF
=
MG
MH

∵M为矩形对角线AC、BD的交点,
∴MB=MA=MC.
又∵MG⊥AB,MH⊥BC,∴点G、H分别是AB、BC的中点.
∵BC=2AB=4,∴MG=
1
2
BC,MH=
1
2
AB

ME
MF
=2
.(5分)
③当MN、MQ两边都交边BC于E、F时.精英家教网
过点M作MH⊥BC于点H.
∴∠MHE=∠MHF=∠NMQ=90°.
∴∠1=∠3,∠2=∠4.
∴△MEH∽△FEM,△FMH∽△FEM.
ME
FE
=
MH
FM
FM
FE
=
MH
EM

∵M为矩形对角线AC、BD的交点,
∴点M为AC的中点.
又∵MH⊥BC,
∴点M、H分别是AC、BC的中点.
∵BC=2AB=4,
∴AB=2.
∴MH=1.
1
ME
=
FM
MH•EF
=
FM
EF
1
MF
=
EM
MH•EF
=
EM
EF

1
ME2
+
1
MF2
=
FM2+EM2
EF2
=1
.(6分)
精英家教网④当MN交BC边于E点,MQ交AD于点F时.
延长FM交BC于点G.
易证△MFD≌△MGB.∴MF=MG.
同理由③得
1
MG2
+
1
ME2
=1

1
ME2
+
1
MF2
=1
.(7分)
综上所述:ME与MF的数量关系是
ME
MF
=
1
2
ME
MF
=2
1
ME2
+
1
MF2
=1
点评:此题考查了正方形、矩形的性质,全等三角形、相似三角形的判定和性质以及勾股定理等知识的综合应用;由于(2)题的情况较多,做到不漏解是此题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案