精英家教网 > 初中数学 > 题目详情
如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果S△APF+S△BPE+S△PCD=
3
3
2
,那么△ABC的内切圆半径为(  )
分析:过P点作正△ABC的三边的平行线,可得△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分的面积=白色部分的面积,于是求出三角形ABC的面积,进而求出等边三角形的边长和高,再根据等边三角形的内切圆的半径等于高的三分之一即可求出半径的长度.
解答:解:如图,过P点作正△ABC的三边的平行线,则△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,
故可知黑色部分的面积=白色部分的面积,
又知S△AFP+S△PCD+S△BPE=
3
3
2
,故知S△ABC=3
3

S△ABC=
1
2
AB2sin60°=3
3

故AB=2
3
,三角形ABC的高h=3,
△ABC的内切圆半径r=
1
3
h=1.
故选A.
点评:本题主要考查等边三角形的性质,面积及等积变换,解答本题的关键是过P点作三角形三边的平行线,证明黑色部分的面积与白色部分的面积相等,此题有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图,正△ABC中,点M与点N分别是BC、CA上的点,且BM=CN,连接AM、BN,两线交于点Q,求∠AQN的度数.
精英家教网
(2)将1题中的“正△ABC”分别改为正方形ABCD,正五边形ABCDE,正六边形ABCDEF,…,正n边形ABCD…N,其余条件不变,根据第1题的求解思路分别推断∠AQN的度数,将结论填入下表:
正多边形 正方形 正五边形 正六边形 正n边形
∠AQN的度数
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正△ABC中,点M、N分别在AB、AC上,且AN=BM,BN与CM相交于点O,若S△ABC=7,S△OBC=2,则
BMBA
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正△ABC中,MN∥AC,
BM
AM
=
3
2
,D为AC上的一点,O为△BMN的外心,如果
S△AOD
S△ABC
=
1
5
,那么
AD
AC
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•路北区一模)探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案