6£®ÔĶÁÀí½â£»ÎÒÃÇÀ´¶¨ÒåÏÂÃæÁ½ÖÖÊý£º
¢Ùƽ·½ºÍÊý£ºÈôÒ»¸öÈýλÊý»òÈýλÒÔÉϵÄÕûÊý·Ö³É×ó£¬ÖУ¬ÓÒÈý¸öÊýºóÂú×㣺ÖмäÊý=×ó±ßÊýµÄƽ·½¼ÓÉÏÓÒ±ßÊýµÄƽ·½£¬ÎÒÃǾͳƸÃÕûÊýΪƽ·½ºÍÊý£¬±ÈÈ磺¶ÔÓÚÕûÊý251£¬ËüµÄÖмäÊýÊÇ5£¬×ó±ßÊýÊÇ2£¬ÓÒ±ßÊýÊÇ1£¬¡ß22+12=5£¬¡à251Ϊһ¸öƽ·½ºÍÊý£»ÔÙ±ÈÈç3254£¬¡ß32+42=25£¬¡à3254Ϊһ¸öƽ·½ºÍÊý£»µ±È».152£¬4253ÕâÁ½¸öÊý¿Ï¶¨Ò²ÊÇƽ·½ºÍÊý£»
¢ÚË«±¶»ýÊý£ºÈôÒ»¸öÈýλÊý»òÈýλÒÔÉϵÄÕûÊý·Ö³É×ó£¬ÖУ¬ÓÒÈý¸öÊýºóÂú×㣺ÖмäÊý=2¡Á×ó±ßÊý¡ÁÓÒ±ßÊý£¬ÎÒÃǾͳƸÃÕûÊýΪ˫±¶»ýÊý£»±ÈÈ磺¶ÔÓÚÕûÊý163£¬ËüµÄÖмäÊýΪ6£¬×ó±ßÊýΪ1£¬ÓÒ±ßÊýΪ3£¬¡ß2¡Á1¡Á3=6£¬¡à163ÊÇÒ»¸öË«±¶»ýÊý£»ÔÙ±ÈÈç3305£¬2¡Á3¡Á5=30£¬¡à3305ÊÇÒ»¸öË«±¶»ýÊý£»µ±È»£¬361£¬5303ÕâÁ½¸öÊýÒ²ÊÇË«±¶»ýÊý£»
×¢Ò⣺ÔÚÏÂÁÐÎÊÌâÖУ¬ÎÒÃÇͳһÓÃ×Öĸa±íʾһ¸öÕûÊý·Ö³öÀ´µÄ×ó±ßÊý£¬ÓÃ×Öĸb±íʾһ¸öÕûÊý·Ö³öÀ´µÄÓÒ±ßÊý£¬Çë¸ù¾ÝÉÏÊö¶¨ÒåÀ´Íê³ÉÏÂÃæÎÊÌ⣺
£¨1£©Èç¹ûÒ»¸öÈýλÕûÊýΪƽ·½ºÍÊý£¬ÇÒʮλÊý×ÖÊÇ8£¬Ôò¸ÃÈýλÕûÊýÊÇ282£»Èç¹ûÒ»¸öÈýλÕûÊýΪ˫±¶»ýÊý£¬ÇÒʮλÊý×ÖÊÇ4£¬Ôò¸ÃÈýλÕûÊýÊÇ142»ò241£»
£¨2£©ÈôÒ»¸öÕûÊý¼ÈÊÇƽ·½ºÍÊýÓÖÊÇË«±¶»ýÊý£¬Ôòa£¬bÂú×ãʲôÊýÁ¿¹Øϵ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èô$\overline{a585b}$Ϊһ¸öƽ·½ºÍÊý£¬$\overline{a504b}$Ϊһ¸öË«±¶»ýÊý£¬Çóa2-b2£®

·ÖÎö £¨1£©¿ÉÒÔÓÃÊÔÑéµÄ°ì·¨È·¶¨ÖмäÊý×ÖÊÇ8µÄÈýλƽ·½ºÍÊýºÍÖмäÊý×ÖÊÇ4µÄÈýλ˫±¶»ýÊý£»
£¨2£©ÏÈÓÃacb±íÊö³ö¸ÃÕûÊý£¬Í¨¹ýËü¼ÈÊÇƽ·½ÊýÓÖÊÇË«±¶»ýÊýµÃµ½£ºa2+b2=c£¬c=2ab£¬´Ó¶øÈ·¶¨a¡¢b¼ä¹Øϵ£®
£¨3£©ÒòΪa2-b2=£¨a+b£©£¨a-b£©£¬a+b=$\sqrt{{a}^{2}+2ab+{b}^{2}}$£¬a-b=$\sqrt{{a}^{2}-2ab+{b}^{2}}$ÓÉÓÚÈô$\overline{a585b}$Ϊһ¸öƽ·½ºÍÊý£¬$\overline{a504b}$Ϊһ¸öË«±¶»ýÊý¸ù¾Ýƽ·½ºÍÊýºÍË«±¶»ýÊýµÄ¶¨Ò壬¿ÉµÃµ½a2+b2£¬2abµÄÖµ£¬´úÈë¼´¿É£®

½â´ð ½â£º£¨1£©ÒòΪ22+22=8
ËùÒÔÒ»¸öÈýλÕûÊýΪƽ·½ºÍÊý£¬ÇÒʮλÊý×ÖÊÇ8£¬Ôò¸ÃÈýλÕûÊýÊÇ282£»
ÒòΪ2¡Á1¡Á2=4£¬
ËùÒÔÒ»¸öÈýλÕûÊýΪ˫±¶»ýÊý£¬ÇÒʮλÊý×ÖÊÇ4£¬Ôò¸ÃÈýλÕûÊýÊÇ142»ò241£®
¹Ê´ð°¸Îª£º282£¬142»ò241£®
£¨2£©a£¬bÂú×ãÏàµÈ¹Øϵ£¬¼´a=b£®ÀíÓÉ£º
Ò»¸öÕûÊý£¬×Öĸa±íʾ×ó±ßÊý£¬×Öĸb±íʾÓÒ±ßÊý£¬¸ÃÕûÊýµÄÖм䲿·ÖÓÃ×Öĸc±íʾ
ÓÉÓÚ¸ÃÕûÊýÊÇƽ·½Êý£¬ËùÒÔa2+b2=c£¬
ÓÉÓÚ¸ÃÕûÊýÊÇË«±¶»ýÊý£¬ËùÒÔc=2ab£¬
ËùÒÔa2+b2=2ab£¬¼´a2+b2-2ab=0
ËùÒÔ£¨a-b£©2=0£¬¼´a=b£®
£¨3£©Èô$\overline{a585b}$Ϊһ¸öƽ·½ºÍÊý£¬Ôòa2+b2=585
$\overline{a504b}$Ϊһ¸öË«±¶»ýÊý£¬Ôò2ab=504
ËùÒÔa2-b2=£¨a+b£©£¨a-b£©
=$\sqrt{{a}^{2}+2ab+{b}^{2}}$¡Á$\sqrt{{a}^{2}-2ab+{b}^{2}}$
=$\sqrt{1089}$¡Á$\sqrt{81}$
=33¡Á9=297£®

µãÆÀ ±¾Ì⿼²éÁËÍêȫƽ·½¹«Ê½¡¢Òòʽ·Ö½âµÄÏà¹Ø֪ʶ£¬ÊôÓÚ´´ÐÂÀàÌâÄ¿£®Àí½âƽ·½ºÍÊýºÍË«±¶»ýÊýÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÓÃÊʵ±·½·¨½â·½³Ì
£¨1£©2x2+1=3x        
£¨2£©x2-3x-1=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â·½³Ì£º
£¨1£©3x2+4x+1=0                      
£¨2£©x2-x-6=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªB£¨8£¬0£©£¬C£¨0£¬6£©£¬P£¨-3£¬3£©£¬ÏÖ½«Ò»Ö±½ÇÈý½Ç°åEPFµÄÖ±½Ç¶¥µã·ÅÔÚµãP´¦£¬EP½»yÖáÓÚN£¬FP½»xÖáÓÚM£¬°Ñ¡÷EPFÈƵãPÐýת£º
£¨1£©Èçͼ¼×£¬¢ÙÇóOM+ONµÄÖµ£»¢ÚÇóBM-CNµÄÖµ£»
£¨2£©ÈçͼÒÒ£¬¢ÙÇóON-OMµÄÖµ£»¢ÚÇóBM+CNµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖª¡Ï1+¡Ï2=180¡ã£¬¡ÏA=¡ÏC£¬ADƽ·Ö¡ÏEDB£®ÇóÖ¤£º¡Ï3=¡Ï4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬¾ØÐÎABCDÖУ¬AÔÚ×ø±êÔ­µã£¬B¡¢D·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬ÇÒAB=8£¬AD=6£¬
£¨1£©ÇëÖ±½Óд³öÆäÓàÈý¸ö¶¥µãµÄ×ø±êB£¨8£¬0£©£¬C£¨8£¬6£©£¬D£¨0£¬6£©
£¨2£©µãP´ÓµãDÏòCÔ˶¯£¬ËÙ¶ÈΪ1¸öµ¥Î»/Ã룬µãQ´ÓµãBÏòAÔ˶¯£¬ËٶȵãPÏàͬ£¬ÉèÔ˶¯Ê±¼äΪtÃ룬tΪºÎֵʱCµãÔÚPQµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬²¢Ö±½Óд³ö´ËʱP¡¢QµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®$\sqrt{16}$µÄƽ·½¸ùΪ¡À2£»$\sqrt{£¨1-\sqrt{3}£©^{2}}$=$\sqrt{3}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬µãA£¬B£¬F£¬CÔÚͬһֱÏßÉÏ£¬AB=FC£¬DF=EB£¬DF¡ÎBE£®
£¨1£©ÊÔÅжÏADÓëCEÏàµÈÂð£¿
£¨2£©ADÓëCBµÄλÖùØϵÈçºÎ£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÎªÁËÂú×ã¹ã´óÊÐÃñ¶ÔÐÂÄÜÔ´Æû³µµÄÐèÇó£¬ÎÒÊÐijÆû³µÏúÊÛ¹«Ë¾¾ö¶¨µ½Ä³Æû³µÖÆÔ쳧²É¹ºA£¬BÁ½ÖÖÐͺŵÄÐÂÄÜÔ´½Î³µ£®ÈôÓÃ300ÍòÔª£¬Ôò¿É¹º½øAÐͽγµ10Á¾£¬BÐͽγµ15Á¾£»ÈôÓÃ320ÍòÔª£¬Ôò¿É¹º½øAÐͽγµ8Á¾£¬BÐͽγµ20Á¾£¬ÇóA£¬BÁ½ÖÖÐͺŵÄÐÂÄÜÔ´½Î³µµÄµ¥¼Û·Ö±ðΪ¶àÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸