精英家教网 > 初中数学 > 题目详情
8.已知2x+3y-4=0,则9x•27y的值为81.

分析 由2x+3y-4=0,可求得2x+3y=4,然后由幂的乘方与同底数幂的乘法,可得9x•27y=32x+3y,继而求得答案.

解答 解:∵2x+3y-4=0,
∴2x+3y=4,
∴9x•27y=32x•33y=32x+3y=34=81.
故答案为:81.

点评 此题考查了幂的乘方与同底数幂的乘法.注意掌握指数的变化是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图1,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为直线x=2,与x轴的一个交点是(-1,0);
(1)补充完下列结论:abc>0;4a-2b+c>0;b2-4ac>0
(2)如图2,当a=1时,一次函数y=2x-5与y=x2+bx+c交于A、C两点,求不等式
2x-5>x2+bx+c的解集.
(3)抛物线的对称轴上是否存在点P,使得PB+PC的值最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,△EAB和△EDC均为等腰直角三角形,B、C、E三点在同一直线上,且$\frac{CE}{BE}=\frac{1}{2}$,BC=6,在图1中,以点E为位似中心,在△EAB内作△EGF与△EAB位似,相似比是1:k(k≠1),点H是边CE上一动点(不与点C、点E重合),连接GH,HD,如图2.
(1)若k=2时,求证:△EGF≌△EDC;
(2)若k=4时,是否存在点H使得△HGF和△CDH相似?如果存在,求出CH的值;如果不存在,请说明理由;
(3)如果△HGF和△CDH相似,求出k的取值应该满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a-b+c<0;⑤3a+c>0;则正确的结论是
(  )
A.①②⑤B.③④⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.3a3-2a2=aB.(a+b)2=a2+b2C.a6b÷a2=a3bD.(-ab32=a2b6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.请你观察:$\frac{1}{1×2}$=$\frac{1}{1}$-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…
$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=1-$\frac{1}{3}$=$\frac{2}{3}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$;…
从上述运算得到启发,请你填空:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{2015×2016}$=$\frac{2015}{2016}$.
理解以上方法的真正含义,计算:
$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{97×99}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.将0.00005用科学记数法表示应为(  )
A.5×10-4B.5×10-5C.5×10-6D.0.5×10-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一块手表,早上8点20分时的时针、分针所成的角的度数是130°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.关于x的方程ax2-3x+3=0是一元二次方程,则a的取值范围是a≠0.

查看答案和解析>>

同步练习册答案