1号 | 2号 | 3号 | 4号 | 5号 | 总数 | |
甲班 | 89 | 100 | 96 | 118 | 97 | 500 |
乙班 | 100 | 95 | 110 | 91 | 104 | 500 |
分析 (1)根据优秀率=优秀人数除以总人数计算;
(2)根据中位数的定义求解;
(3)根据平均数和方差的概念计算;
(4)利用以上所求,进而分析得出成绩较好的班级.
解答 解:(1)甲班的优秀率=2÷×100%5=40%;乙班的优秀率=3÷5×100%=60%;
(2)甲班5名学生比赛成绩的中位数是97(个);
乙班5名学生比赛成绩的中位数是100(个);
(3)甲班的平均数=(89+100+96+118+97)÷5=100(个),
甲班的方差S甲2=[(89-100)2+(100-100)2+(96-100)2+(118-100)2+(97-100)2]÷5=94
乙班的平均数=(100+96+110+90+104)÷5=100(个),
乙班的方差S乙2=[(100-100)2+(96-100)2+(110-100)2+(90-100)2+(104-100)2]÷5=46.4;
故S甲2>S乙2
(4)因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好,应选择让乙班级去参加比赛.
点评 本题考查了中位数、平均数和方差等概念以及运用.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动.一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com