精英家教网 > 初中数学 > 题目详情
如图四边形AOBC是正方形,点C的坐标是(4,0),动点P、Q同时从点O出发,点P沿着折线OACB的方向运动;点Q沿着折线OBCA的方向运动,设运动时间为t.
(1)求出经过O、A、C三点的抛物线的解析式.
(2)若点Q的运动速度是点P的2倍,点Q运动到边BC上,连接PQ交AB于点R,当AR=3时,请求出直线PQ的解析式.
(3)若点P的运动速度为每秒1个单位长度,点Q的运动速度为每秒2个单位长度,两点运动到相遇停止.设△OPQ的面积为S.请求出S关于t的函数关系式以及自变量t的取值范围.
(4)判断在(3)的条件下,当t为何值时,△OPQ的面积最大?

【答案】分析:(1)要求经过O、A、C三点的抛物线的解析式,只要求出点A的坐标就可以,并且根据抛物线的对称性可知点A是顶点,所以根据正方形的性质很容易求出点A的坐标,从而解决问题.
(2)要求直线PQ的解析式,根据P、Q的速度关系,利用相似三角形的对应边成比例求出P、Q的坐标,最后利用待定系数法求出其解析式就可.
(3)本问实际上是一个分段函数,P、Q到达不同的位置S与t的解析式是不一样的,Q到达B点时P在OA的中点,Q到达C点时P到达A点,求出P、Q的 相遇时间分3种情况就可以表示出其函数关系式.
(4)通过第(3)问的函数关系式及图形就可以比较或计算出△OPQ的最大面积.
解答:解:(1)设AB、OC相交于点D.
∵四边形ACBO是正方形,
∴OD=CD=OC,OD⊥CD,∠OAD=∠AOC=45°,AB=OC,∠OAC=90°,
∴∠ADC=90°,DO=DA,AB=4,OA=AC=BC=OB=4,
∵OC=4
∴DO=DA=2
∴点A(2,2),
设经过O、A、C三点的抛物线的解析式为y=ax2+bx+c.由题意得

解得:
故经过O、A、C三点的抛物线的解析式为:y=

(2)设t秒后点Q运动到边BC上,连接PQ交AB于点R.
∴OP=t,OB+BQ=2t
∴AP=4-t,BQ=2t-4
∵AR=3
∴BR=
∵△ARP∽△BRQ


解得:t=
∴OP=,P(
BQ=,Q(
设PQ的解析式为y=kx+b,由题意得

解得:
∴PQ的解析式为:y=

(3)由题意得
t+2t=16
解得:t=
∴PQ相遇的时间为在整个运动过程中S与t的函数关系式有三种情况:


(4)在(3)的条件下,当t=4时,△OPQ的面积最大.
∴S△OPQ最大=8
点评:本题是一道二次函数的综合试题,考查了待定系数法求抛物线的解析式、直线的解析式以及动点问题在函数中的运用.本题难度比较大,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图四边形AOBC是正方形,点C的坐标是(4
2
,0),动点P、Q同时从点O出发,点P沿着折线OACB的方向运动;点Q沿着折线OBCA的方向运动,设运动时间为t.
(1)求出经过O、A、C三点的抛物线的解析式.
(2)若点Q的运动速度是点P的2倍,点Q运动到边BC上,连接PQ交AB于点R,当AR=3
2
时,请求出直线PQ的解析式.
(3)若点P的运动速度为每秒1个单位长度,点Q的运动速度为每秒2个单位长度精英家教网,两点运动到相遇停止.设△OPQ的面积为S.请求出S关于t的函数关系式以及自变量t的取值范围.
(4)判断在(3)的条件下,当t为何值时,△OPQ的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形AOBC是正方形,点C的坐标是(4
2
,0),动点P从点O出发,沿折线OACB方向匀速运动,另一动点Q从点C出发,沿折线CBOA方向匀速运动.
(1)求点A的坐标点和正方形AOBC的面积;
(2)将正方形绕点O顺时针旋转45°,求旋转后的正方形与原正方形的重叠部分的面积;
(3)若P的运动速度是1个单位/每秒,Q的运动速度是2个单位/每秒,P、Q两点同时出发,当Q运动到点A 时P、Q同时停止运动.设运动时间为t秒,是否存在这样的t值,使△OPQ成为等腰三角形?若存在,请求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=(
1
2
sin45°)x2-2x+n过原点O和x轴上另一点C,它的顶点为B,四边形AOBC是菱形,动点P、Q同时从O点出发,P沿折线OACB运动,Q沿折线OBCA运动.
(1)求出点A、点B的坐标,并求出菱形AOBC的边长;
(2)若点Q的运动速度是点P运动速度的3倍,点Q第一次运动到BC上,连接PQ交AB于点R,当AR=3
2
时,求直线PQ的解析式;
(3)若点P的运动速度是每秒2个单位长,点Q的运动速度是每秒3个单位长,运动到第一次相遇时停止.设△OPQ的面积为S,运动的时间为t,求这个运动过程中S与t之间的函数关系式,并写出当t为何值时,△OPQ的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图四边形AOBC是正方形,点C的坐标是(4数学公式,0),动点P、Q同时从点O出发,点P沿着折线OACB的方向运动;点Q沿着折线OBCA的方向运动,设运动时间为t.
(1)求出经过O、A、C三点的抛物线的解析式.
(2)若点Q的运动速度是点P的2倍,点Q运动到边BC上,连接PQ交AB于点R,当AR=3数学公式时,请求出直线PQ的解析式.
(3)若点P的运动速度为每秒1个单位长度,点Q的运动速度为每秒2个单位长度作业宝,两点运动到相遇停止.设△OPQ的面积为S.请求出S关于t的函数关系式以及自变量t的取值范围.
(4)判断在(3)的条件下,当t为何值时,△OPQ的面积最大?

查看答案和解析>>

同步练习册答案