【题目】如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D、G分别在AB、AC上,AH交DG于M.
(1)求证:AMBC=AHDG;
(2)加工成的矩形零件DEFG的面积能否等于25cm2?若能,求出宽DE的长度;否则,请说明理由.
【答案】(1)详见解析;(2)加工成的矩形零件DEFG的面积不能等于25cm2,理由详见解析.
【解析】试题分析:(1)根据矩形的对边平行得到DG∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”得到△ADG∽△ABC,再根据相似三角形对应高的比等于相似比得到然后利用比例的基本性质即可证明AMBC=AHDG;
(2)当加工成的矩形零件DEFG的面积等于时,设宽DE的长度为xcm,则AM=(8x)cm, 根据(1)中结论AMBC=AHDG,列出方程整理得进而求解即可.
试题解析:(1)证明:∵四边形DEFG为矩形,
∴DG∥EF,
∴△ADG∽△ABC,
∴
∴AMBC=AHDG;
(2)加工成的矩形零件DEFG的面积不能等于,理由如下:
当加工成的矩形零件DEFG的面积等于时,设宽DE的长度为xcm,则AM=(8x)cm,
∵高线AH长8cm,底边BC长10cm,AMBC=AHDG,
∴
整理得
∵△=644×20=16<0,
∴x无实数根,
故加工成的矩形零件DEFG的面积不能等于.
科目:初中数学 来源: 题型:
【题目】每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次抽样调查的样本容量是 ;
(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;
(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算下列各题:
①2x2﹣4x+1+2x﹣5x2
②(8x﹣3x2)﹣5xy﹣2(3xy﹣2x2)
(2)先化简,再求值:(3x2y+5x)﹣[x2y﹣4(x﹣x2y)],其中(x+2)2+|y﹣3|=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为缓解城市汽车交通拥堵,减少汽车尾气对大气的污染. 某区政府投放了大量公租自行车供市民使用. 到2016年底,全区已有公租自行车2 500辆,摆放点60个. 预计到2018年底,全区将有公租自行车5 000辆,并且平均每个摆放点的公租自行车数量是2016年底平均每个摆放点的公租自行车数量的1.2倍. 预计到2018年底,全区将有摆放点多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.
(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;
(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形中,,是对角线,点、分别是边、上两个点,且满足,连接与相交于点.
(1)如图1,求的度数;
(2)如图2,作于点,求证:;
(3)在满足(2)的条件下,且点在菱形内部,若,,求菱形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com