精英家教网 > 初中数学 > 题目详情
如图,∠AOB内有一点P.
(1)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D;
(2)写出图中互补的角;
(3)写出图中相等的角.
分析:(1)利用量角器和直尺即可作出;
(2)根据平行线的性质:两直线平行,同旁内角互补即可写出;
(3)根据平行线的性质:两直线平行,内错角相等,同位角相等,即可写出.
解答:解:(1)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D;
(2)互补的角:∠1与∠2,∠2与∠O,∠O与∠3,∠3与∠4,
∠3与∠P,∠1与∠3,∠P与∠2,∠4与∠2.
(3)相等的角:∠1=∠P=∠O=∠4;∠2=∠3
点评:本题考查了基本作图和平行线的性质,理解性质是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是
10

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=SABF.(S表示面积)

问题迁移:如图2,在已知锐角∠AOB内有一定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部分计划以公路OA、OB和经过防疫站的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66º,∠POB=30º,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66º≈0.91,tan66º≈2.25,≈1.73)

拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、、(4,2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:解答题

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=S△ABF.(S表示面积)

问题迁移:如图2,在已知锐角∠AOB内有一定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部分计划以公路OA、OB和经过防疫站的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66º,∠POB=30º,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66º≈0.91,tan66º≈2.25,≈1.73)

拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、、(4,2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形的面积的最大值.

 

查看答案和解析>>

同步练习册答案