精英家教网 > 初中数学 > 题目详情

【题目】某校为迎接县中学生篮球比赛,计划购买AB两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购实两种篮球共需费用840元.

1AB两种篮球共需单价各多少元?

2)设购买A种篮球x个且A种篮球不少于8个,所需费用为y元,试确定yx的关系式.

【答案】1A种篮球每个50元,B种篮球每个30元;(2y20x+6008≤x≤20

【解析】

1)根据费用可得等量关系为:6A种篮球的总费用+14B种篮球的总费用=72012A种篮球的总费用+8B种篮球的总费用=840,把相关数值代入可得AB两种篮球单价;

2)关系式为:y等于两种篮球费用和,A种篮球的个数≥8,即可求解.

解:(1)设A种篮球每个x元,B种篮球每个y元,

依题意得,,解得

答:A种篮球每个50元,B种篮球每个30元;

2)设购买A种篮球x个,则B种为(20x)个,

由题意得:

yx的关系式为:y20x+6008≤x≤20).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,点M,N在同一个正比例函数图象上的是(   )

A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)

C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OCOD10分米,展开角∠COD60°,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米.当∠AOC90°时,点A离地面的距离AM_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则BE′﹣BE_________分米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在O中,点DO上的一点,点C是直径AB延长线上一点,连接BDCD,且∠A=∠BDC

1)求证:直线CDO的切线;

2)若CM平分∠ACD,且分别交ADBD于点MN,当DM2时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.

(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;

(2)请你估计该校约有 名学生喜爱打篮球;

(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线yx2+bx+cc0)与x轴交于AB两点,(点A在点B的左侧),与y轴交于点C,顶点为D,且OBOC3,点E为线段BD上的一个动点,EFx轴于F

1)求抛物线的解析式;

2)是否存在点E,使ECF为直角三角形?若存在,求点E的坐标;不存在,请说明理由;

3)连接ACBC,若点P是抛物线上的一个动点,当P运动到什么位置时,∠PCB=∠ACO,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

动手操作:如图1,四边形是一张矩形纸片,,点分别在边上,且,连接.将分别沿折叠,点分别落在点处.

探究展示:

(1)“刻苦小组”发现:,且,并展示了如下的证明过程.

证明:在矩形中,.

又∵

.

.

.(依据1)

.

.(依据2)

反思交流:①上述证明过程中的“依据1”与“依据2”分别指什么?

②“勤奋小组”认为:还可以通过证明四边形是平行四边形获证,请你根据“勤奋小组”的证明思路写出证明过程.

猜想证明:

(2)如图2,折叠过程中,当点在直线的同侧时,延长于点,延长于点,则四边形是什么特殊四边形?请说明理由.

联想拓广:

(3)如图3,连接.

①当时,的长为________;

的长有最大值吗?若有,请你直接写出长的最大值和此时四边形的形状;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线与直线l交于x轴上的一点A,和另一点

求抛物线的解析式;

P是抛物线上的一个动点PAB两点之间,但不包括AB两点于点M轴交AB于点N,求MN的最大值;

如图2,将抛物线绕顶点旋转后,再作适当平移得到抛物线,已知抛物线的顶点E在第一象限的抛物线上,且抛持线与抛物线交于点D,过点D轴交抛物线于点F,过点E轴交抛物线于点G,是否存在这样的抛物线,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=k1x+b和反比例函数的图象相交于点Pm1n+1),点Q0a)在函数y=k1x+b的图象上,且mn是关于x的方程ax23a+1x+2a+1=0的两个不相等的整数根(其中a为整数),求一次函数和反比例函数的解析式.

查看答案和解析>>

同步练习册答案