精英家教网 > 初中数学 > 题目详情
如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为(  )

A.
B.C.
D.
A
首先延长DC与A′D′,交于点M,由四边形ABCD是菱形、折叠的性质,易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后设CF=x,D′F=DF=y,利用正切函数的知识,即可求得答案.
解:延长DC与A′D′,交于点M,

∵在菱形纸片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD,
∴∠D=180°﹣∠A=120°,
根据折叠的性质,可得∠A′D′F=∠D=120°,
∴∠FD′M=180°﹣∠A′D′F=60°,
∵D′F⊥CD,
∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,
∵∠BCM=180°﹣∠BCD=120°,
∴∠CBM=180°﹣∠BCM﹣∠M=30°,
∴∠CBM=∠M,
∴BC=CM,
设CF=x,D′F=DF=y,
则BC=CM=CD=CF+DF=x+y,
∴FM=CM+CF=2x+y,
在Rt△D′FM中
∴x=y,
==
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

+2cos30°的值为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,将一个边长为2的正方形和一个长为2、宽为1的长方形拼在一起,构成一个大的长方形.现将小长方形绕点顺时针旋转至,旋转角为
(1)当点恰好落在边上时,求旋转角的值;
(2)如图2,的中点,且0°<<90°,求证:
(3)先将小长方形绕点顺时针旋转,使全等(0°<<180°),再将此时的小长方形沿CD边竖直向上平移t个单位,设移动后小长方形边直线与BC交于点H,若DH∥FC,求上述运动变换过程中和t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.

(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?
(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

观察下列等式
①sin30°=     cos60°=
②sin45°=   cos45°=
③sin60°=    cos30°=

根据上述规律,计算sin2a+sin2(90°﹣a)=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC 中,∠A=120°,AB=4,AC=2,则sin B 的值是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案