解:(1)把x=0代入y=2x+2得y=2;把y=0代入y=2x+2得2x+2=0,解得x=-1,
则A点坐标为(-1,0)M点坐标为(0,2),
∵点B与点A关于点M成中心对称,
∴B点坐标为(1,4),
把B(1,4)代入
得k=1×4=4,
∴反比例函数的解析式为y=
;
(2)如图,作BE⊥x轴于E,分别过C、D点作x轴、y轴的垂线,它们相交于F点,
∵AB∥DC,AD∥BC,
∴四边形ABCD为平行四边形,
∴AB=DC,
易证得Rt△ABE≌Rt△DCF,
∴DF=AE=2,CF=BE=4,
∴C点的横坐标为2,
把x=2代入y=
得y=2,
∴OD=4-2=2,
∴D点坐标为(0,-2),
∴直线AB向下平移4个单位得到BC;
(3)∵四边形ABCD为平行四边形,
∴△BCN的面积=
平行四边形ABCD的面积,
∵S
△ABD=S
△ADM+S
△BDM=
×1×4+
×1×4=4,
∴△BCN的面积=
×2×4=2.
分析:(1)先确定A点坐标为(-1,0),M点坐标为(0,2),再根据中心对称的性质得到B点坐标为(1,4),然后运用待定系数法确定反比例函数的解析式;
(2)作BE⊥x轴于E,分别过C、D点作x轴、y轴的垂线,它们相交于F点,由于AB∥DC,AD∥BC,可判断四边形ABCD为平行四边形,则AB=DC,易证得Rt△ABE≌Rt△DCF,
得到DF=AE=2,CF=BE=4,即C点的横坐标为2,然后根据反比例函数解析式确定C点坐标,则OD=2,D点坐标为(0,-2),所以直线AB向下平移4个单位得到BC;
(3)根据平行四边形的性质得△BCN的面积=
平行四边形ABCD的面积,然后计算S
△ABD=S
△ADM+S
△BDM=4,则△BCN的面积=
×2×4=2.
点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、平行四边形的判定与性质.