精英家教网 > 初中数学 > 题目详情
1.计算:如图,在⊙O中,∠ACB=30°,AB=6.
(1)填空:∠AOB=60°;
(2)求$\widehat{AB}$的长(结果保留π).

分析 (1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=2∠ACB=60°;
(2)利用弧长公式l=$\frac{nπr}{180}$(弧长为l,圆心角度数为n,圆的半径为r)进行计算即可.

解答 解:(1)∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
故答案为:60;

(2)∵∠AOB=60°,
∴${l}_{\widehat{AB}}$=$\frac{60×π×6}{180}$=2π.

点评 此题主要考查了圆周角定理和弧长计算,关键是掌握弧长公式l=$\frac{nπr}{180}$和圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨询得到的信息:

根据上述信息,求小明乘坐城际直达动车到上海所需的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).
(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?
(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?
(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ同时平分△ABC的周长与面积?若存在求出这个时刻的t 值,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,等腰△ABC中,AB=AC=13,BC=10,D是BC边上任意一点,DE⊥AB于E,DF⊥AC于点F,则DE+DF=$\frac{120}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.阅读材料:
设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程的系数之间有如下关系:
x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.根据该材料完成下列填空:
已知m,n是方程x2-2014x+2015=0的两根,则:
(1)m+n=2014,mn=2015;
(2)(m2-2015m+2016)(n2-2015n+2016)=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点A坐标为(4,0),点P在第一象限且在直线y=-x+5上.
(1)设点P坐标为(x,y),写出△OPA的面积S与x之间的关系式(其中点P横坐标在O与A点之间变化);
(2)当S=12时,求点P的坐标;
(3)若△OPA是直角三角形,求P点坐标,并求面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知直角三角形面积是24平方厘米,斜边长是10厘米,则这个直角三角形两直角边(  )
A.6厘米和10厘米B.8厘米和10厘米C.6厘米和8厘米D.8厘米和8厘米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O是等边三角形ABC的外接圆,点P是$\widehat{AB}$上一点,连接AP,CP,作射线BP.
(1)求证:PC平分∠APB;
(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论;
(3)若AP=2,PC=5,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,∠ACD=∠B,AC=6,AD=4,则AB=9.

查看答案和解析>>

同步练习册答案