分析 根据非负数的性质列方程求出a、b的值,然后代入代数式再裂项进行计算即可得解.
解答 解:由题意得,a-1=0,b-3=0,
解得a=1,b=3,
所以,$\frac{1}{ab}$+$\frac{1}{(a+2)(b+2)}$+$\frac{1}{(a+4)(b+4)}$+…+$\frac{1}{(a+100)(b+100)}$,
=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{101×103}$,
=2×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{101}$-$\frac{1}{103}$),
=2×(1-$\frac{1}{103}$),
=$\frac{204}{103}$.
点评 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,本题难点在于裂项.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com