【题目】甲、乙两车同时从地出发前往地.甲车中途因故停车一段时间,之后以原速继续行驶,与乙车同时到达地.下图是甲、乙两车离开地的路程与时间之间的函数图象.
(1)甲车每小时行驶_________千米,的值为________.
(2)求甲车再次行驶过程中与之间的函数关系式.
(3)甲、乙两车离开地的路程差为8千米时,直接写出的值.
【答案】(1) 80,1.5; (2); (3) 0.4或1.2或或1.6
【解析】
(1)根据题意和函数图象中的数据可以求得甲车的速度和a的值;
(2)根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;
(3)根据题意,利用分类讨论的数学思想可以求得x的值.
(1)由题意可得,
甲车的速度是:,
,
故答案为:80,1.5;
(2)设甲车再次行驶过程中与之间的函数关系式是,
将(1.5,80),(2,120)代入得:
,
解得:,
即甲车再次行驶过程中y与x之间的函数关系式是;
(3)设乙车行驶过程中y与x之间的函数关系式是,
将 (2,120)代入得:,
解得:,
∴乙车行驶过程中y与x之间的函数关系式是,
当0≤x≤1时,甲车行驶过程中y与x之间的函数关系式是,
将(1,80)代入得:80=c,
即当0≤x≤1时,甲车行驶过程中y与x之间的函数关系式是,
①当时,解得,
②当时,解得,
③当时,解得,
④当,解得.
由上可得,甲、乙两车离开A地的路程差为8km时,的值是0.4或1.2或或1.6.
科目:初中数学 来源: 题型:
【题目】为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量(公斤)与销售单价(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.
(1)求与的函数解析式,并写出定义域;
(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数 的图象相交于C、D两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DEF的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于 ,其中正确的个数有( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )
A.29.1米
B.31.9米
C.45.9米
D.95.9米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的边的边分别在轴,轴正半轴上,, 点从点出发以每秒2个单位长度的速度向终点运动,点不与点重合以为边在上方作正方形,设正方形与的重叠部分图形的面积为(平方单位),点的运动时间为(秒).
(1)直线所在直线的解析式是__________________________.
(2)当点落在线段上时,求的值.
(3)在点运动的过程中,求与之间的函数关系式;
(4)设边的中点为,点关于点的对称点为,以为边在上方作正方形当正方形与重叠部分图形为三角形时,直接写出的取值范围.
(提示:根据点的运动,可在草纸上画出正方形与重叠部分图形为不同图形时的临界状态去研究.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是⊙O的直径,AB=10,,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com