【题目】已知:,,,设,,,……,
(1)计算___________,____________,____________
(2)写出,,,四者之间的关系,并证明你的结论.
(3)根据(2)的结论,直接写出的值是_____________
【答案】(1)5,4,13;(2),见解析;(3)38
【解析】
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,由(a+b+c)3=﹣2(a3+b3+c3)+6abc+3(a2+b2+c2),可求s3,由变形可求s4;
(2)sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc,将已知条件代入即可;
(3)利用所求关系式可得:s5=s4+2s3﹣s2=13+8﹣5=16,则s6=s5+2s4﹣s3=16+26﹣4=﹣38.
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,
(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc=a3+b3+c3+3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc.
∵a+b+c=1,abc=﹣1,
∴(a+b+c)3=a3+b3+c3+3a2(1-a)+3b2(1-b)+3c2(1-c)+6abc
∴(a+b+c)3=a3+b3+c3+3a2-3a3+3b2-3b3+3c21-3c3+6abc
∴(a+b+c)3=﹣2(a3+b3+c3)-6+3(a2+b2+c2),
∴s3=a3+b3+c3=4.
∵ab+bc+ac=-2,
∴,
∴,
∴,
∴.
∵,
∴,
∴
∴
∴s4=a4+b4+c4=13.
故答案为:5,4,13;
(2)关系为sn=sn﹣1﹣2sn﹣2﹣sn﹣3;理由:
sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc.
∵a+b+c=1,ab+bc+ca=﹣2,abc=﹣1,
∴sn=sn﹣1+2sn﹣2﹣sn﹣3;
(3)∵s5=s4+2s3﹣s2=13+8﹣5=16,
∴s6=s5+2s4﹣s3=16+26﹣4=﹣38,
∴a6+b6+c6的为38.
故答案为:38.
科目:初中数学 来源: 题型:
【题目】如图,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段时间内,
①自行车行驶在摩托车前面;
②自行车与摩托车相遇;
③自行车行驶在摩托车后面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.
(1)试判断直线BF与⊙O的位置关系,并说明理由;
(2)若AB=6,BF=8,求tan∠CBF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )
A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是( )
A. 2﹣2B. 2C. ﹣1D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,∠BAC=60°,△ABC绕点C顺时针旋转,旋转角为α(0°<α<180°),点A、B的对应点分别是点D、E.
(1)如图1,当点D恰好落在边AB上时,试判断DE与AC的位置关系,并说明理由.
(2)如图2,当点B、D、E三点恰好在一直线上时,旋转角α=__°,此时直线CE与AB的位置关系是__.
(3)在(2)的条件下,联结AE,设△BDC的面积S1,△AEC的面积S2,则S1与S2的数量关系是_____.
(4)如图3,当点B、D、E三点不在一直线上时,(3)中的S1与S2的数量关系仍然成立吗?试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com