精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.

【答案】
(1)证明:∵AD平分∠CAE,

∴∠EAD=∠CAD,

∵AD∥BC,

∴∠EAD=∠B,∠CAD=∠C,

∴∠B=∠C,

∴AB=AC.

故△ABC是等腰三角形


(2)解:当∠CAE=120°时△ABC是等边三角形.

∵∠CAE=120°,AD平分∠CAE,

∴∠EAD=∠CAD=60°,

∵AD∥BC,

∴∠EAD=∠B=60°,∠CAD=∠C=60°,

∴∠B=∠C=60°,

∴△ABC是等边三角形


【解析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【考点精析】掌握等腰三角形的判定和等边三角形的判定是解答本题的根本,需要知道如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米用科学记数法表示约为(  )

A.9.16×103B.9.16×104C.916×105D.0.916×105

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)3a-(5a-2b)+3(2a-b)
(2)先化简,再求值。4( -2)-2x,其中x=-2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点P(2m+4,3m+3)在x轴上,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.x3?x4=x12
B.(x33=x6
C.2x2+x=x
D.(3x)2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AD平分∠BAC,AB=AC,连结BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为(
A.2对
B.3对
C.4对
D.5对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.

查看答案和解析>>

同步练习册答案