精英家教网 > 初中数学 > 题目详情
如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧
AB
上的一个动点(不与精英家教网点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
3

(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,
AD
DC
=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.
分析:(1)根据一条弧所对的圆周角等于它所对的圆心角的一半,连OM,OB,可求出∠BOM的度数,∠C=∠BOM.
(2)根据圆内接四边形一外角等于它的内对角,可证明△CDE∽△CBA,两三角形相似对应线段成比例,同时运用(1)中∠C=60°可得
CD
CB
的值,能计算出DE的长.
(3)根据直径所对的圆周角是直角,连接AE,在直角三角形中用三角函数可求出y与x之间的关系.
解答:精英家教网解:(1)如图:连接OB、OM.
则在Rt△OMB中,∵OB=2,MB=
3
,∴OM=1.
∵OM=
1
2
OB
,∴∠OBM=30°.
∴∠MOB=60°.
连接OA.则∠AOB=120°.
∴∠C=
1
2
∠AOB=60°.

(2)∵四边形ABED内接于⊙M,
∴∠CBA+∠ADE=180°,
∵∠CDE+∠ADE=180°,
∴∠CDE=∠CBA,
在△CDE和△CBA中,精英家教网
∵∠CDE=∠CBA,∠ECD=∠ACB,
∴△CDE∽△CBA,∴
DE
AB
=
DC
BC

连接BD,则∠BDC=∠ADB=90°.
在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°.∴BC=2DC.
DC
BC
=
1
2
.即
DE
AB
=
1
2

∴DE=
1
2
AB
=
1
2
×2
3
=
3


(3)连接AE.精英家教网
∵AB是⊙M的直径,∴∠AEB=∠AEC=90°.
AD
DC
=x
,可得AD=x•DC,AC=AD+DC=(x+1)•DC.
在Rt△ACE中,∵cos∠ACE=
CE
AC
,sin∠ACE=
AE
AC

∴CE=AC•cos∠ACE=(x+1)•DC•cos60°=
1
2
(x+1)•DC

AE=AC•sin∠ACE=(x+1)•DC•sin60°=
3
2
(x+1)•DC

又由(2),知BC=2DC.
∴BE=BC-CE=2DC-
1
2
(x+1)•DC=
1
2
(3-x)•DC

在Rt△ABE中,tan∠ABC=
AE
BE
=
3
2
(x+1)•DC
1
2
(3-x)•DC
=
3
(x+1)
3-x

y=
3
(x+1)
3-x
(0<x<3).
点评:本题考查圆周角与圆心角之间的关系,园中相似三角形的运用,以及由直径所对的圆周角是直角可得直角三角形,在直角三角形中对三角函数的灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点精英家教网P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,作BD⊥AC于点D,OM⊥AB于点M.sin∠CBD=
13
.则OM=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,弦AB=8,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于(  )
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为5,两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步练习册答案