精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等腰梯形ABCD中,AB=CD,∠D=120°,AC平分∠BCD,梯形的中位线长为6,求AC的长及梯形的面积?
分析:作AE⊥BC于E,根据等腰梯形性质求出∠DAC=∠DCA=30°,求出∠BAC=90°,推出AD=DC,根据梯形的中位线定理求出AD+BC,根据直角三角形性质求出BC=2AD,AE,根据勾股定理求出AC,根据面积公式求出即可.
解答:精英家教网解:∵四边形ABCD是等腰梯形,∠D=120°,
∴∠B=∠BCD=60°,
∵AC平分∠BCD,
∴∠BCA=∠ACD=30°,
则∠BAC=90°,
又∠CAD=∠BCA,
∴∠CAD=∠ACD,
则AD=CD=AB,
在Rt△ABC中,∵∠BCA=30°,
∴BC=2AB=2AD,
∵中位线长为6,
∴AD+BC=3AD=12,
∴AD=4,BC=2AD=8,
在Rt△ABC中,由勾股定理,得AC=
BC2-AB2
=
82-42
=4
3

作AE⊥BC于E,
AE=
1
2
AC=2
3

∴梯形的面积为6×2
3
=12
3

答:AC的长是4
3
,梯形的面积是12
3
点评:本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案