精英家教网 > 初中数学 > 题目详情

【题目】扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.

根据以上信息,请回答下列问题:

(1)表中a= b=

(2)请补全频数分布直方图;

(3)若该校有学生1200人,试估计该校学生每天阅读时间超过1小时的人数.

【答案】(1)1200.1;(2)补全频数分布直方图见解析;(3)该校学生每天阅读时间超过1小时的人数为600人.

【解析】

(1)根据阅读时间在0.5<t1范围的频数与频率可求得a的值,继而用12除以a即可求得b的值;

(2)求出阅读时间在1<t1.5范围的人数,即可补全直方图;

(3)1200乘以阅读时间超过1小时的频率即可求得答案.

(1)36÷0.3=120(),总共120人,

a=120

B=12÷120=0.1

故答案为:1200.1

(2)0.4×120=48()

补全直方图如图所示:

(3)1200×(0.4+0.1)=600人,

答:该校学生每天阅读时间超过1小时的人数为600.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.

1)求证:四边形AECF是平行四边形;

2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.

(1)求每台型、型净水器的进价各是多少元;

(2)槐荫公司计划购进两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点AB都在格点处.

(1)请在图中作等腰△ABC,使其底边AC2,且点C为格点;

(2)(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?

1)请判断下列命题的真假,并在相应命题后面的括号内填上

①等腰三角形两腰上的中线相等  ;

②等腰三角形两底角的角平分线相等  ;

③有两条角平分线相等的三角形是等腰三角形  ;

2)请写出等腰三角形两腰上的中线相等的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题呈现

如图,四边形ABCD是矩形,AB=20BC=10,以CD为一边向矩形外部作等腰直角△GDC∠G=90°,点M在线段AB上,且AM=a,点P沿折线AD-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AB.PQAB之间的距离为x.

1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为_________

②在运动过程中,求四边形AMQP的最大面积;

2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CEDB,BEDC.

(1)求证:四边形DBEC是菱形;

(2)若AD=3,DF=1,求四边形DBEC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年5月的第二个星期日即为母亲节,父母恩深重,恩怜无歇时,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲. 节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量(件)是销售单价(元/件)的一次函数.

销售单价 (/)

30

40

50

60

每天销售量 ()

350

300

250

200

(1)求出的函数关系

(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100﹪:

当销售单价取何值时,该花店销售鲜花礼盒每天获得的利润为5000?(利润=销售总价-成本价);

试确定销售单价取何值时,花店销该鲜花礼盒每天获得的利润(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,抛物线的对称轴与轴交于点,顶点坐标为.

1)求抛物线的表达式和顶点的坐标;

2)如图1,点为抛物线上一点,点不与点重合,当时,过点轴,交抛物线的对称轴于点,作轴于点H,得到矩形,求矩形的周长的最大值;

3)如图2,点为抛物线对称轴上一点,是否存在点,使以点为顶点的三角形是直角三角形?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案