精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,对角线AC、BD相交于点O,直线MN经过点O,设锐角∠DOC=∠,将△DOC以直线MN为对称轴翻折得到△D’OC’,直线A D’、B C’相交于点P.
(Ⅰ)当四边形ABCD是矩形时,如图1,请猜想A D’、B C’的数量关系以及∠APB与∠α的大小关系;
(Ⅱ)当四边形ABCD是平行四边形时,如图2,(1)中的结论还成立吗?
(Ⅲ)当四边形ABCD是等腰梯形时,如图3,∠APB与∠α有怎样的数量关系?请证明.
(Ⅰ)A D’=B C’,∠APB=∠α.                     
(Ⅱ) A D’=B C’仍然成立,∠APB=∠α不一定成立. 
(Ⅲ)∠APB=180°-∠α.                    
证明:如图3,设OC’,PD’交于点E.
∵ 将△DOC以直线MN为对称轴翻折得到△D’OC’,
∴ △DOC≌△D’OC’,
∴ OD=OD’, OC=OC’,∠DOC=∠D’OC’.
∵ 四边形ABCD是等腰梯形,
∴ AC=BD,AB="CD," ∠ABC= ∠DCB.
∵ BC=CB,
∴ △ABC≌△DCB.
∴ ∠DBC=∠ACB.
∴ OB=OC,OA=OD.
∵ ∠AOB= ∠COD=∠C’O D’,
∴ ∠BOC’ = ∠D’O A.
∵ OD’=OA,OC’=OB,
∴ △D’OC’≌△AOB,             
∴ ∠OD’C’= ∠OAB .
∵ OD’=OA,OC’=OB,∠BOC’ = ∠D’O A,
∴ ∠OD’A = ∠OAD’=∠OBC’=∠OC’ B.
∵ ∠C’EP= ∠D’EO,
∴ ∠C’PE= ∠C’OD’=∠COD=∠α.
∵∠C’PE+∠APB=180°,
∴∠APB=180°-∠α.                          
(1)根据矩形的性质及角之间的关系证明△BOD′≌△AOC′,得出对应边对应角相等,推理即可得出结论;
(2)先进行假设,然后根据平行四边形的性质及相似三角形比例关系即可得出答案;
(3)易证△BOD′≌△C′OA,则AC′=BD′,∠OBD′=∠OC′A≠∠OAC′,从而得出∠AMB≠α.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

从一般到特殊是一种重要的数学思想,右图通过类比的方法展现了认识三角形与平行四边形图形特征的过程,你认为“?”处的图形名称是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA 的延长线的垂线EF,垂足为F。

(1)找出图中与EF相等的线段,并证明你的结论;
(2)求AF的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.
(1)BD与CE相等吗?请说明理由.
(2)你能求出BD与CE的夹角∠BFC的度数吗?
(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DG之间的关系?
      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题是假命题的是 ……………………………………………………(       )
A.有一组邻边相等的矩形是正方形
B.有一个角是直角的菱形是正方形
C.有一组邻边相等且有一个角是直角的平行四边形是正方形
D.有三边相等,且有一个直角的四边形是正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+S2=S3+S4              ② S2+S4= S1+ S3 
③若S3="2" S1,则S4="2" S2     ④若S1= S2,则P点在矩形的对角线上

其中正确的结论的序号是    ▲   (把所有正确结论的序号都填在横线上).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,依次连结第一个正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去。若第一个正方形边长为1,则第n个正方形的面积是      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是( )
A.6B.12C.15D.24

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在四边形ABCD中,对角线AC、BD交于点O,从 ①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC=BD;⑥∠ABC=90°这六个条件中,可选取三个推出四边形ABCD是矩形,如①②⑤→四边形ABCD是矩形.请再写出符合要求的两个:__________________;__________________。

查看答案和解析>>

同步练习册答案