精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,CDAB,且CD2=ADDB,AE平分CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.则下列结论正确的是(  )

A. ①②④ B. ②③④ C. ①②③④ D. ①③

【答案】C

【解析】

根据已知条件可证ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FNAB.证明ADF∽△CDA,根据相似三角形的性质得出AD2=DFDC.

①∵AE平分∠CAB,

∴∠CAE=DAF,

∴△CAE∽△DAF,

∴∠AFD=AEC,

∴∠CFE=AEC,

CF=CE,

CN=BE,

CE=BN,

CF=BN,故本选项正确;

②∵CDAB,

∴∠ADC=CDB=90°,

CD2=ADDB,

∴△ADC∽△CDB,

∴∠ACD=B,

∴∠ACB=90°,故本选项正确;

③∵∠EAB=B,

EA=EB,

易知:∠ACF=ABC=EAB=EAC,

FA=FC,

易证:CF=CE,

CF=AF=CE,

FA=FC=BN,EA=EB,

EF=CE,

,

∵∠FEN=AEB,

∴△EFN∽△EAB,

∴∠EFN=EAB,

FNAB,故本选项正确;

④易证ADF∽△CDA,

AD2=DFDC,故本选项正确;

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙OABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线,与AB的延长线相交于点P

1)求证:PD是⊙O的切线;

2)求证:PBD∽△DCA

3)当AB=6AC=8时,求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cmBC=80cmA=120°B=60°C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠A=90°

1)请用圆规和直尺作出⊙P,使圆心PAC边上,且与ABBC两边都相切(保留作图痕迹,不写作法和证明);

2)在(1)的条件下,若∠B=45°AB=1PBC于点D,求劣弧的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.

1)求从袋中随机摸出一个球是红球的概率.

2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.

3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知ABC中,AB5BC3AC4PQABP点在AC上(与AC不重合),QBC上.

1)当PQC的面积与四边形PABQ的面积相等时,求CP的长;

2)当PQC的周长与四边形PABQ的周长相等时,求CP的长;

3)试问:在AB上是否存在一点M,使得PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.

查看答案和解析>>

同步练习册答案