【题目】如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B的一点,点M为弦BC的中点.
(1)如果AM交OC于点E,求OE:CE的值;
(2)如果AM⊥OC于点E,求∠ABC的正弦值;
(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO交于圆内点F,请完成下列探究.
探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.
探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.
【答案】(1)OE:CE=1:2;(2);(3)探究一: (其中),探究二:.
【解析】
(1)过点O作ON║BC交AM于点N,根据AB是圆O的直径,点M为弦BC的中点即可;
(2)证明△OME∽△MCE,求出即可;
(3)过点D作DL⊥BO于点L,设BD=,则CD=,BL=DL=,CH=,OH= ,根据,求出y的解析式,再根据OC垂直平分DF,求出BD即可.
解:(1)过点O作ON║BC交AM于点N,
∵AB是圆O的直径,ON∥BM,∴
∵点M为弦BC的中点,∴
∴OE:CE=ON:BM=1:2
(2)∵点M为弦BC的中点,
∴OM⊥BC.
∴∠C+∠MOC=90°,
∵AM⊥OC于点E,
∴∠MOC+∠OME=90°,
∴∠OME=∠C.
∵∠OME=∠C,∠MOE=∠MOE,
∴△OME∽△MCE
∴.
设OE=,则CE=2, ME=
在直角△MCE中,,
∴.
(3)过点D作DL⊥BO于点L,
∵AB=10,AB:BC=5:4,
∴BC=8,
设BD=,则CD=,BL=DL=,CH=,OH= ,
∵OH∥LD,
∴
∴
∴ (其中)
∵以O为圆心,OF为半径的圆经过D,
∴OC垂直平分DF,FO=OL,
,
此时.
科目:初中数学 来源: 题型:
【题目】某地发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,正方形ABCD,点E在边AD上,AF⊥BE,垂足为点F,点G在线段BF上,BG=AF.
(1)求证:CG⊥BE;
(2)如果点E是AD的中点,联结CF,求证:CF=CB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知对称轴为直线的抛物线与轴交于、两点,与轴交于C点,其中.
(1)求点B的坐标及此抛物线的表达式;
(2)点D为y轴上一点,若直线BD和直线BC的夹角为15,求线段CD的长度;
(3)设点为抛物线的对称轴上的一个动点,当为直角三角形时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com