精英家教网 > 初中数学 > 题目详情
已知二次函数的图象经过点(-2,-5)、(1,4).
(1)求这个二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.
(1)二次函数的解析式为 
(2)
x的取值范围是-1<x<3

试题分析:(1)根据题意,得
 解得  
所以,这个二次函数的解析式为.   
(2)该二次函数经过点(-2,-5)、(1,4),其对称轴x=,其图象如下


结合图象可知,当y>0时,x的取值范围是-1<x<3.   
点评:本题考查二次函数,解答本题需要掌握求二次函数解析式的方法,待定系数法,会画二次函数的图象,二次函数是中考考试的重点
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.

(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x与抛物线交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线经过点A、B、C.

(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其坐标为t,
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;
②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→ C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).

(1)求经过A、B、C三点的抛物线的解析式;
(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;
(3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值,若不能,请说明理由;
(4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的部分对应值如下表:
x

-2
-1
0
1
2
3

y

5
0
-3
-4
-3
0

(1)二次函数图象所对应的顶点坐标为           
(2)当x=4时,y=           
(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。现以AB所在直线为x轴.以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米。设抛物线解析式为

(1)求a的值;
(2)点C(一1,m)是抛物线上一点,点C关于原点D的对称点为点D,连接CD、BC、BD,求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数
轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的
整点个数是   

查看答案和解析>>

同步练习册答案