Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®¾«Ó¢¼Ò½ÌÍø
£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·­ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾­¹ýÔ­¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾­¹ýÔ­¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿
·ÖÎö£º£¨¢ñ£©ÓÉAB=a£¬AD=b£¬BE=x£¬SÌÝÐÎABEF=SÌÝÐÎCDFE£¬½áºÏÌÝÐεÄÃæ»ý¹«Ê½¿ÉÖ¤µÃAF=EC£»
£¨¢ò£©£¨1£©¸ù¾ÝÌâÒ⣬»­³öͼÐΣ¬½áºÏÌÝÐεÄÐÔÖÊÇóµÃx£ºbµÄÖµ£»
£¨2£©Ö±ÏßEE¡ä¾­¹ýÔ­¾ØÐεĶ¥µãDʱ£¬¿ÉÖ¤Ã÷ËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬ÔòBE¡ä¡ÎEF£»µ±Ö±ÏßEE¡ä¾­¹ýÔ­¾ØÐεĶ¥µãAʱ£¬BE¡äÓëEF²»Æ½ÐУ®
½â´ð£º£¨¢ñ£©Ö¤Ã÷£º¡ßAB=a£¬AD=b£¬BE=x£¬SÌÝÐÎABEF=SÌÝÐÎCDFE£¬
¡à
1
2
a£¨x+AF£©=
1
2
a£¨EC+b-AF£©£¬
¡à2AF=EC+£¨b-x£©£®
ÓÖ¡ßEC=b-x£¬
¡à2AF=2EC£®
¡àAF=EC£®

£¨¢ò£©½â£º£¨1£©µ±Ö±ÏßEE¡ä¾­¹ýÔ­¾ØÐεĶ¥µãDʱ£¬Èçͼ£¨Ò»£©
¡ßEC¡ÎE¡äB¡ä£¬
¡à
EC
E¡äB¡ä
=
DC
DB¡ä
£¬
ÓÉEC=b-x£¬E¡äB¡ä=EB=x£¬DB¡ä=DC+CB¡ä=2a£¬¾«Ó¢¼Ò½ÌÍø
µÃ
b-x
x
=
a
2a
£¬
¡àx£ºb=
2
3
£®
µ±Ö±ÏßE¡äE¾­¹ýÔ­¾ØÐεĶ¥µãAʱ£¬Èçͼ£¨¶þ£©
ÔÚÌÝÐÎAE¡äB¡äDÖУ¬
¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àCE=
1
2
£¨AD+E¡äB¡ä£©£¬
¼´b-x=
1
2
£¨b+x£©£¬
¡àx£ºb=
1
3
£®

£¨2£©Èçͼ£¨Ò»£©£¬µ±Ö±ÏßEE¡ä¾­¹ýÔ­¾ØÐεĶ¥µãDʱ£¬BE¡ä¡ÎEF£¬
Ö¤Ã÷£ºÁ¬½ÓBF£¬
¡ßFD¡ÎBE£¬FD=BE£¬
¡àËıßÐÎFBEDÊÇƽÐÐËıßÐΣ¬
¡àFB¡ÎDE£¬FB=DE£¬¾«Ó¢¼Ò½ÌÍø
ÓÖ¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àDE=EE¡ä£¬
¡àFB¡ÎEE¡ä£¬FB=EE¡ä£¬
¡àËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬
¡àBE¡ä¡ÎEF£®
Èçͼ£¨¶þ£©£¬µ±Ö±ÏßEE¡ä¾­¹ýÔ­¾ØÐεĶ¥µãAʱ£¬ÏÔÈ»BE¡äÓëEF²»Æ½ÐУ¬
ÉèÖ±ÏßEFÓëBE¡ä½»ÓÚµãG£¬¹ýµãE¡ä×÷E¡äM¡ÍBCÓÚM£¬ÔòE¡äM=a£¬
¡ßx£ºb=
1
3
£¬
¡àEM=
1
3
BC=
1
3
b£¬
ÈôBE¡äÓëEF´¹Ö±£¬ÔòÓСÏGBE+¡ÏBEG=90¡ã£¬
ÓÖ¡ß¡ÏBEG=¡ÏFEC=¡ÏMEE¡ä£¬¡ÏMEE¡ä+¡ÏME¡äE=90¡ã£¬
¡à¡ÏGBE=¡ÏME¡äE£¬
ÔÚRt¡÷BME¡äÖУ¬tan¡ÏE¡äBM=tan¡ÏGBE=
E¡äM
BM
=
a
2
3
b
£¬
ÔÚRt¡÷EME¡äÖУ¬tan¡ÏME¡äE=
EM
E¡äM
=
1
3
b
a
£¬
¡à
a
2
3
b
=
1
3
b
a
£®
ÓÖ¡ßa£¾0£¬b£¾0£¬
a
b
=
2
3
£¬
¡àµ±
a
b
=
2
3
ʱ£¬BE¡äÓëEF´¹Ö±£®
µãÆÀ£º±¾ÌâÊǵÀ¸ù¾ÝƽÒƵÄÐÔÖÊ¡¢ÌÝÐεÄÐÔÖʺÍƽÐÐËıßÐεÄÐÔÖʽáºÏÇó½âµÄ×ÛºÏÌ⣬½âÌ⸴ÔÓ£¬ÄѶȴ󣮿¼²éѧÉú×ÛºÏÔËÓÃÊýѧ֪ʶµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Äêɽ¶«Ê¡Öп¼ÊýѧģÄâÊÔ¾í£¨Èý£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®
£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·­ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾­¹ýÔ­¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾­¹ýÔ­¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2003ÄêÈ«¹úÖп¼ÊýѧÊÔÌâ»ã±à¡¶Í¼ÐεÄƽÒÆ¡·£¨01£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨2007•ÈÕÕÕ£©Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®
£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·­ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾­¹ýÔ­¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾­¹ýÔ­¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2007ÄêÈ«¹úÖп¼ÊýѧÊÔÌâ»ã±à¡¶Í¼ÐεÄƽÒÆ¡·£¨02£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨2007•ÈÕÕÕ£©Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®
£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·­ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾­¹ýÔ­¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾­¹ýÔ­¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2007Äêɽ¶«Ê¡ÈÕÕÕÊÐÖп¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨2007•ÈÕÕÕ£©Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®
£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·­ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾­¹ýÔ­¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾­¹ýÔ­¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸