精英家教网 > 初中数学 > 题目详情

某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产A、B两种产品共50件,已知每生产一件A种产品,需要甲种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元.
(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?
(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式.
(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?

(1)符合的生产方案有三种,分别为①生产A产品30件,B产品20件;②生产A产品31件,B产品19件;③生产A产品32件,B产品18件;(2);(3)第一种方案,45000.

解析试题分析:(1)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入即可;解不等式,得到关于x的范围,根据整数解可得相应方案
(2)总获利=700×A种产品数量+1200×B种产品数量;
(3)根据函数的增减性和(1)得到的取值可得最大利润.
试题解析:(1);解第一个不等式得:,解第二个不等式得:,∴,∵为正整数,∴=30、31、32,∴50﹣30=20,50﹣31=19,50﹣32=18,∴符合的生产方案有三种,分别为①生产A产品30件,B产品20件;②生产A产品31件,B产品19件;③生产A产品32件,B产品18件;
(2)
(3)∵,﹣500<0,而,∴当越小时,总利润越大,即当时,最大利润为:元.∴生产A产品30件,B产品20件使生产A、B两种产品的总获利最大,最大利润是45000元.
考点:1.一元一次不等式组的应用;2.方案型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,下图是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像.

(1)A、B两地的距离是          千米,乙车出发         小时与甲相遇;
(2)求乙车出发1.5小时后直至到达A地的过程中,的函数关系式及的取值范围;
(3)乙车出发多长时间,两车相距100千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

若方程组的解满足,求关于的函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线、直线,直线分别交x轴于B、C两点,相交于点A.

(1)求A、B、C三点坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图

(1)第20天的总用水量为多少米3
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数的图象经过点,且与函数的图象相交于点
(1)求的值;
(2)若函数的图象与轴的交点是B,函数的图象与轴的交点是C,求四边形的面积(其中O为坐标原点).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处(如图),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.

(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川南充8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与轴围成的三角形的面积.

查看答案和解析>>

同步练习册答案