精英家教网 > 初中数学 > 题目详情

操作探究:
(1)现有一块等腰三角形纸板,量得周长为32cm,底比一腰多2cm.若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图

(2)计算拼成的各个四边形的两条对角线长的和.

(3)另用纸片制作一个直角边为4的等腰Rt△OPQ,将(1)中的剪得的Rt△ABD纸片的直角顶点D和PQ的中点M重合(如图所示),以M为旋转中心,旋转Rt△ABD纸片,Rt△ABD纸片的两直角边与⊿POQ的两直角边分别交于点E、F. 连接EF,探究:在旋转三角形纸板的过程中,△EOF的周长是否存在最小值,若存在,求出最小值,若不存在。请说明理由。

探究画图;19.6;4+2

解析试题分析:(1)

(2) 设AB=AC=xcm,则BC=(x+2)cm,由题意得解得x=10cm.因此AB=AC=10cm,则BC=12cm,过点A作AD⊥BC于D,∴BD=CD=6cm,∴AD=8cm.
可以拼成四种四边形,如上图所示.
如图⑴,两对角线之和为10+10=20cm;
如图⑵,AD=,∴两对角线和为
如图⑶,BC=,∴两对角线和为
如图⑷,∵,∴CO=4.8cm,CD=9.6cm.∴两对角线之和为19.6cm.8分
(3)答:△EOF的周长存在最小值理由是:连接OM 

∵ Rt⊿POQ中,OP="OQ" =4,M是PQ的中点
∴OM=PM=PQ=2
∠POM=∠FOM=∠P=45°  ∵∠PME+∠EMO=∠OMF+∠EMO
∴∠PME=∠OMF   ⊿PME≌⊿OMF 
∴ ME=MF
∴ PE=OF   ∴OE+OF=OE+PE=OP=4
令OE=x  EF=y则y2=x2+(4-x)2=2x2-8x+16
=2(x-2)2+8≥8
当x=2时y2有最小值=8从而 y≥2
故△EOF的周长存在最小值,其最小值是4+2                        
考点:全等三角形的性质和判定
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连接AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

动手操作:如图1,把矩形AA′B′B卷成以AB为高的圆柱形,则点A与点
 
重合,点B与点
 
重合.精英家教网
探究与发现:
(1)如图2,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝带到顶部B处作装饰,则这条丝线的最小长度是
 
cm;(丝线的粗细忽略不计)
(2)如图3,若用丝线从该圆柱的底部A缠绕4圈直到顶部B处,则至少需要多少丝线?
实践与应用:
如图4,现有一个圆柱形的玻璃杯,准备在杯子的外面缠绕一层装饰带,为使带子全部包住杯子且不重叠,需要将带子的两端沿AE,CF方向进行裁剪,如图5所示,若带子的宽度为1.5厘米,杯子的半径为6厘米,则sinα=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州)课本中,把长与宽之比为
2
的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=
2
,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年四川省九年级第一次月考数学试卷(解析版) 题型:填空题

操作探究:

(1)现有一块等腰三角形纸板,量得周长为32cm,底比一腰多2cm.若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图

(2)计算拼成的各个四边形的两条对角线长的和.

(3)另用纸片制作一个直角边为4的等腰Rt△OPQ,将(1)中的剪得的Rt△ABD纸片的直角顶点D和PQ的中点M重合(如图所示),以M为旋转中心,旋转Rt△ABD纸片,Rt△ABD纸片的两直角边与⊿POQ的两直角边分别交于点E、F. 连接EF,探究:在旋转三角形纸板的过程中,△EOF的周长是否存在最小值,若存在,求出最小值,若不存在。请说明理由。

 

查看答案和解析>>

同步练习册答案