精英家教网 > 初中数学 > 题目详情
如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的正半轴相交于点精英家教网B,与y轴相交于点C(0,-3),且BO=CO.
(1)求这个二次函数的解析式;
(2)设这个二次函数图象的顶点为M,试判断并证明△BCM是否直角三角形.
分析:(1)由于BO=OC=3,可得出B点的坐标,然后将B,C两点的坐标代入抛物线中即可求出二次函数的解析式.
(2)先根据(1)得出的抛物线求出M点的坐标,然后用坐标系中两点的距离公式分别求出BC2,OM2,CM2的值,根据勾股定理即可判断出△BCM是否为直角三角形.
解答:解:(1)∵BO=CO,点B在x轴的正半轴,C(0,-3),
∴B(3,0),
∵点B、C都在抛物线上,
-3=c
0=9+3b+c

∴b=-2,c=-3,
∴y=x2-2x-3;

(2)△BCM是直角三角形.
证明:∵y=x2-2x-3=(x-1)2-4,
∴M(1,-4),
∴CM2=1+1=2,BM2=(3-1)2+42=20,BC2=32+32=18,
∴CM2+BC2=BM2
∴△BCM是直角三角形.
点评:本题主要考查了用待定系数法求二次函数的解析式以及直角三角形的判定等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案