【题目】以正方形的边为直径作半圆,过点作直线切半圆于点,交边于点,若的周长为,则直角梯形周长为( )
A. 12 B. 13 C. 14 D. 15
【答案】C
【解析】
根据切线长定理可得AE=EF,BC=CF;根据△CDE的周长可求出正方形ABCD的边长;在Rt△CDE中,利用勾股定理可将AE的长求出,进而可求出直角梯形ABCE的周长.
设AE的长为x,正方形ABCD的边长为a,
∵CE与半圆O相切于点F,
∴AE=EF,BC=CF,
∵EF+FC+CD+ED=12,
∴AE+ED+CD+BC=12,即AD+CD+BC=12,
∴AD=CD=BC=AB=4,
在Rt△CDE中,ED2+CD2=CE2,即(4-x)2+42=(4+x)2,解得:x=1,
∴AE+EF+FC+BC+AB=1+1+4+4+4=14,
即直角梯形ABCE周长为14.
故选C.
科目:初中数学 来源: 题型:
【题目】已知一次函数y1=kx+b的图象经过点(0,﹣2),(3,1).
(1)求一次函数的表达式,并在所给直角坐标系中画出此函数的图象;
(2)根据图象回答:当x 时,y1=0;
(3)求直线y1=kx+b、直线y2=﹣2x+4与y轴围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,与AB相交于点E,连接CE.
(1)证明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直线DE上的一点.则当P在何处时,PB+PC最小,并求出此时PB+PC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶.
如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息:
(1)找出x与y之间的函数关系式;
(2)请利用不等关系,求出每盒饼干和每袋牛奶的标价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(-3,3),点B的坐标为(﹣6,0).
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标;
(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=的图象上,求a的值;
(3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90).
①当α=30°时点B恰好落在反比例函数y=的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,点是边的中点.以为直径作圆,交边于点,连接,交于点.
求证:是圆的切线;
当时,求证:;
如图,当是圆的切线,为中点,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下,不成立,但有些数可以使得它成立,例如:a=1,b=2.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).
(1)判断数对(﹣2,1),(3,3)是否是“相伴数对”;
(2)若(k,﹣1)是“相伴数对”,求k的值;
(3)若(4,m)是“相伴数对”,求代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽和小明上山游玩,小丽乘缆车,小明步行,两人相约在山顶的缆车终点会合.已知小明行走到缆车终点的路程是缆车到山顶的线路长的2倍,小丽在小明出发后1小时才乘上缆车,缆车的平均速度为190 m/min.设小明出发x min后行走的路程为y m.图中的折线表示小明在整个行走过程中y与x的函数关系.
⑴ 小明行走的总路程是 m,他途中休息了 min.
⑵ ①当60≤x≤90时,求y与x的函数关系式;
②当小丽到达缆车终点时,小明离缆车终点的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线 y1=﹣2x2+2,直线 y2=2x+2,当 x 任取一值时,x 对应的函数值分别为 y1、y2.若 y1≠y2,取 y1、y2 中的较小值记为 M;若 y1=y2,记 M=y1=y2.例如;当 x=1 时,y1=0,y2=4,y1<y2, 此时 M=0,下列判断中正确的是( )
①当 x>0 时,y1>y2;②当 x<0 时,x 值越大,M 值越小;③使得 M 大于 2 的 x 值不存在;④使得 M=1 的 x 值是﹣或.
A. ①②③ B. ①④ C. ②③④ D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com