精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2-x-2m=0有两个不相等的实数根,则实数m的取值范围是
 

关于x的方程kx2+(k+2)x+
k4
=0
有两个不相等的实数根,则实数k的取值范围是
 

已知一元二次方程4x2+mx+9=0有两个相等的实数根,则m=
 
,此时相等的两个实数根为
 
分析:(1)由方程x2-x-2m=0有两个不相等的实数根,得到△>0,即△=12-4×1×(-2m)=1+8m>0,解不等式即可得到实数m的取值范围;
(2)由关于x的方程kx2+(k+2)x+
k
4
=0
有两个不相等的实数根,则k≠0且△>0,即△=(k+2)2-4×k×
k
4
=4k+4>0,解两个不等式即可得到实数m的取值范围;
(3)由方程4x2+mx+9=0有两个相等的实数根,则△=0,即△=m2-4×4×9=0,解得m=±12,然后分别代入原方程解方程即可.
解答:解:(1)∵方程x2-x-2m=0有两个不相等的实数根,
∴△>0,即△=12-4×1×(-2m)=1+8m>0,
解得m>-
1
8

∴实数m的取值范围是m>-
1
8

(2)∵关于x的方程kx2+(k+2)x+
k
4
=0
有两个不相等的实数根,
∴k≠0且△>0,即△=(k+2)2-4×k×
k
4
=4k+4>0,
解得k>-1,
∴实数k的取值范围是k>-1且k≠0.
(3)∵方程4x2+mx+9=0有两个相等的实数根,
∴△=0,即△=m2-4×4×9=0,
解得m=±12,
当m=12,方程变为:4x2+12x+9=0,(2x+3)2=0,
解得x1=x2=-
3
2

当m=-12,方程变为:4x2-12x+9=0,(2x-3)2=0,
解得x1=x2=
3
2

故答案为:(1)m>-
1
8
;(2)k>-1且k≠0;(3)±12;当m=12,x1=x2=-
3
2
;当m=-12,x1=x2=
3
2
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义和解法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案