精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,⊙P的圆心是(
2
,a
)(a>0),半径为
2
,函数y=x的图象被⊙P截得的弦AB的长为2.
(1)试判断y轴与圆的位置关系,并说明理由.
(2)求a的值.
分析:(1)根据d和r的大小关系即可判断y轴与圆的位置关系;
(2)过P点作PE⊥AB于E,连接PA并延长PA交x轴于点C.分别求出PA、AC,相加即可.
解答:解:(1)答:y轴与⊙P相切,
∵点P的坐标为(
2
,a)

∴点P到y轴的距离为
2

∵⊙P的半径为
2

∴点P到y轴的距离=⊙P的半径,
∴y轴与⊙P相切;

(2)过点P作PE⊥AB于点E,
连接PA并延长PA交x轴于点C,
∵PE⊥AB,AB=2∴AE=
1
2
AB=1,
∵PA=
2

在Rt△PAE中,由勾股定理得:PE=1,
∴PE=AE,∴∠PAE=45°,
∵函数y=x的图象与y轴的夹角为45°,
∴y轴∥PA,∴∠PCO=90°,
∴A点的横坐标为
2

∵A点在直线y=x上,∴A点的纵坐标为
2

∴PC=2
2

∴a=2
2
点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案