精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为

【答案】y=x2﹣2x﹣3
【解析】解:∵y=x2+2x+1=(x+1)2

∴A点坐标为(﹣1,0),

解方程组

∴点C′的坐标为(1,4),

∵点C和点C′关于x轴对称,

∴C(1,﹣4),

设原抛物线解析式为y=a(x﹣1)2﹣4,

把A(﹣1,0)代入得4a﹣4=0,解得a=1,

∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.

所以答案是y=x2﹣2x﹣3.

【考点精析】掌握二次函数的性质和抛物线与坐标轴的交点是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线PQMN,点CPQMN之间(不在直线PQMN上)的一个动点.

1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;

2)若把一块三角尺(∠A30°,∠C90°)按如图乙方式放置,点DEF是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;

3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④不仅是有理数,而且是分数;⑤是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为(

A.7B.6C.5D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BDBC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作思考:如图1,在平面直角坐标系中,等腰的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点的长为______B的坐标为______直接写结果

感悟应用:如图2,在平面直角坐标系中,将等腰如图放置,直角顶点,点,试求直线AB的函数表达式.

拓展研究:如图3,在直角坐标系中,点,过点B轴,垂足为点A,作轴,垂足为点CP是线段BC上的一个动点,点Q是直线上一动点问是否存在以点P为直角顶点的等腰,若存在,请求出此时P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: 把解集在数轴上表示出来,并将解集中的整数解写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

136x2-49=0

2)(x-32=64

38x327=0

44x12121=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABCABAC,在AC上有一点D,连接BD,并延长至点E,使AEAB

1)画图:作∠EAC的平分线AFAFDE于点F(用尺规作图,保留作图痕迹,不写作法);

2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF

3)若AC8,∠E15°,求三角形ABE的面积.

查看答案和解析>>

同步练习册答案