3£®Èçͼ£¬Å×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚµãA£¨-1£¬0£©£¬B£¨3£¬0£©£®
£¨1£©Çób¡¢c£®
£¨2£©Èçͼ1£¬ÔÚµÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹µÃÈý½ÇÐÎBCDµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öDµã×ø±ê£¬Çó³öÈý½ÇÐÎBCDµÄÃæ»ý×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬Å×ÎïÏߵĶԳÆÖáÓëÅ×ÎïÏß½»ÓÚµãP£¬ÓëÖ±ÏßBCÏཻÓÚµãM£¬Á¬½ÓPB£®ÎÊÔÚÖ±ÏßBCÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã´úÈëy=-x2+bx+c£¬¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖáÓÚH£¬¸ù¾ÝS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC¨T-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬ÔÙÀûÓÃÅä·½·¨¼´¿ÉÇó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÉèPMÓëxÖá½»ÓÚµãE£¬Çó³ö¹ýµãEÓëBCƽÐеÄÖ±ÏßEQ½âÎöʽΪy=-x+1£¬½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$£¬¼´¿ÉµÃ³öµãQµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡à$\left\{\begin{array}{l}{-1+b+c=0}\\{-9+3b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3£»

£¨2£©Èçͼ1£¬ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖáÓÚH£¬
ÔòS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC
=$\frac{1}{2}$£¨-t2+2t+3+3£©t+$\frac{1}{2}$£¨3-t£©£¨-t2+2t+3£©-$\frac{1}{2}$¡Á3¡Á3
=-$\frac{3}{2}$t2+$\frac{9}{2}$t
=-$\frac{3}{2}$£¨t-$\frac{3}{2}$£©2+$\frac{27}{8}$£¬
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±t=$\frac{3}{2}$ʱ£¬Dµã×ø±êÊÇ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£¬¡÷BCDÃæ»ýµÄ×î´óÖµÊÇ$\frac{27}{8}$£»

£¨3£©Èçͼ2£¬ÉèPMÓëxÖá½»ÓÚµãE£¬
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡àPµãµÄ×ø±êΪ£¨1£¬4£©£¬EµãµÄ×ø±êΪ£¨1£¬0£©£®
¡ßB£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡àµ±x=1ʱ£¬y=2£¬
¡àMµãµÄ×ø±êΪ£¨1£¬2£©£¬
¡àPM=ME=2£¬BMΪ¡÷BPEµÄÖÐÏߣ¬
¡àS¡÷PMB=S¡÷EMB£®
¹ýE×÷BCµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚµãQ£¬ÔòS¡÷QMB=S¡÷EMB£¬
¡àS¡÷QMB=S¡÷PMB£®
¡ßE£¨1£¬0£©£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬EQ¡ÎBC£¬
¡àÖ±ÏßEQµÄ½âÎöʽΪy=-x+1£®
ÓÉ$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=\frac{3-\sqrt{17}}{2}}\\{y=\frac{\sqrt{17}-1}{2}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=\frac{3+\sqrt{17}}{2}}\\{y=-\frac{1+\sqrt{17}}{2}}\end{array}\right.$£¬
¡àµãQµÄ×ø±êΪQ1£¨$\frac{3-\sqrt{17}}{2}$£¬$\frac{\sqrt{17}-1}{2}$£©£¬Q2£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬
¡àÔÚÖ±ÏßBCÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¬´ËʱµãQµÄ×ø±êΪQ1£¨$\frac{3-\sqrt{17}}{2}$£¬$\frac{\sqrt{17}-1}{2}$£©£¬Q2£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£®

µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý¡¢Ò»´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬Èý½ÇÐΡ¢ÌÝÐεÄÃæ»ý£¬½âÎöʽƽÒƵĹæÂÉ£¬Ö±ÏßÓëÅ×ÎïÏߵĽ»µã×ø±êÇ󷨣¬ÄѶÈÊÊÖУ®½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ£»£¨2£©ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬ÀûÓø·¨Çó³öS¡÷BCD¹ØÓÚtµÄ¶þ´Îº¯Êý½âÎöʽ£»£¨3£©ÕÒµ½QµÄλÖã¬Çó³öÖ±ÏßEQµÄ½âÎöʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®°Ñ¶àÏîʽ4y2-64Òòʽ·Ö½âµÃ4£¨y+4£©£¨y-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®²Ù×÷ÓëÖ¤Ã÷£ºÈçͼ1£¬°ÑÒ»¸öº¬45¡ã½ÇµÄÖ±½ÇÈý½Ç°åECFºÍÒ»¸öÕý·½ÐÎABCD°Ú·ÅÔÚÒ»Æð£¬Ê¹Èý½Ç°åµÄÖ±½Ç¶¥µãºÍÕý·½ÐεĶ¥µãCÖغϣ¬µãE¡¢F·Ö±ðÔÚÕý·½ÐεıßCB¡¢CDÉÏ£¬Á¬½ÓAF£¬È¡AFÖеãM£¬EFµÄÖеãN£¬Á¬½ÓMD¡¢MN£®
£¨1£©Á¬½ÓAE£¬ÇóÖ¤£º¡÷AEFÊǵÈÑüÈý½ÇÐΣ»
£¨2£©ÇëÅжÏÏ߶ÎMDÓëMNµÄÊýÁ¿ÓëλÖùØϵ£¬²¢Ö¤Ã÷£»
£¨3£©Èçͼ2£¬½«Í¼1ÖеÄÖ±½ÇÈý½Ç°åECFÈƵãC˳ʱÕëÐýת180¡ã£¬ÆäËûÌõ¼þ²»±ä£¬ÔòµÚ£¨2£©ÌâÖеĽáÂÛ»¹³ÉÁ¢Âð£¿ÇëÖ±½Ó»Ø´ð¡°³ÉÁ¢¡±»ò¡°²»³ÉÁ¢¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®×ÛºÏÓëʵ¼ù
ÎÊÌâÇé¾³
   ÔÚ×ÛºÏÓëʵ¼ù¿ÎÉÏ£¬ÀÏʦÈÃͬѧÃÇÒÔ¡°ÁâÐÎֽƬµÄ¼ôÆ´¡±ÎªÖ÷Ì⿪չÊýѧ»î¶¯£¬Èçͼ1£¬½«Ò»ÕÅÁâÐÎֽƬABCD£¨¡ÏBAD£¾90¡ã£©ÑضԽÇÏßAC¼ô¿ª£¬µÃµ½¡÷ABCºÍ¡÷ACD£®
²Ù×÷·¢ÏÖ
£¨1£©½«Í¼1Öеġ÷ACDÒÔAΪÐýתÖÐÐÄ£¬°´ÄæʱÕë·½ÏòÐýת½Ç¦Á£¬Ê¹¦Á=¡ÏBAC£¬µÃµ½Èçͼ2ËùʾµÄ¡÷AC¡äD£¬·Ö±ðÑÓ³¤BCºÍDC¡ä½»ÓÚµãE£¬ÔòËıßÐÎACEC¡äµÄÐÎ×´ÊÇÁâÐΣ»
£¨2£©´´ÐÂС×齫ͼ1Öеġ÷ACDÒÔAΪÐýתÖÐÐÄ£¬°´ÄæʱÕë·½ÏòÐýת½Ç¦Á£¬Ê¹¦Á=2¡ÏBAC£¬µÃµ½Èçͼ3ËùʾµÄ¡÷AC¡äD£¬Á¬½ÓDB£¬C¡äC£¬µÃµ½ËıßÐÎBCC¡äD£¬·¢ÏÖËüÊǾØÐΣ¬ÇëÄãÖ¤Ã÷Õâ¸ö½áÂÛ£»
ʵ¼ù̽¾¿
£¨3£©çÇÃÜС×éÔÚ´´ÐÂС×é·¢ÏÖ½áÂ۵Ļù´¡ÉÏ£¬Á¿µÃͼ3ÖÐBC=13cm£¬AC=10cm£¬È»ºóÌá³öÒ»¸öÎÊÌ⣺½«¡÷AC¡äDÑØ×ÅÉäÏßDB·½ÏòƽÒÆacm£¬µÃµ½¡÷A¡äC¡äD¡ä£¬Á¬½ÓBD¡ä£¬CC¡ä£¬Ê¹ËıßÐÎBCC¡äDÇ¡ºÃΪÕý·½ÐΣ¬ÇóaµÄÖµ£¬ÇëÄã½â´ð´ËÎÊÌ⣻
£¨4£©ÇëÄã²ÎÕÕÒÔÉϲÙ×÷£¬½«Í¼1Öеġ÷ACDÔÚͬһƽÃæÄÚ½øÐÐÒ»´ÎƽÒÆ£¬µÃµ½¡÷A¡äC¡äD£¬ÔÚͼ4Öл­³öƽÒƺó¹¹Ôì³öµÄÐÂͼÐΣ¬±êÃ÷×Öĸ£¬ËµÃ÷ƽÒƼ°¹¹Í¼·½·¨£¬Ð´³öÄã·¢ÏֵĽáÂÛ£¬²»±ØÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®·Ö½âÒòʽ£ºmn2-2mn+m=m£¨n-1£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®°Ñ¶àÏîʽax2+2a2x+a3·Ö½âÒòʽµÄ½á¹ûÊÇa£¨x+a£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁÐÒòʽ·Ö½âÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x2-4=£¨x+4£©£¨x-4£©B£®x2-2x-15=£¨x+3£©£¨x-5£©C£®3mx-6my=3m£¨x-6y£©D£®2x+4=2£¨x+4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®»¯¼ò£º£¨1-$\frac{1}{m+1}$£©•£¨m+1£©=m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö±Ïßy=kx+3¾­¹ýµãA£¨2£¬1£©£¬Ôò²»µÈʽkx+3¡Ý0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®x¡Ü3B£®x¡Ý3C£®x¡Ý-3D£®x¡Ü0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸