·ÖÎö £¨1£©°ÑA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã´úÈëy=-x2+bx+c£¬¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖáÓÚH£¬¸ù¾ÝS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC¨T-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬ÔÙÀûÓÃÅä·½·¨¼´¿ÉÇó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÉèPMÓëxÖá½»ÓÚµãE£¬Çó³ö¹ýµãEÓëBCƽÐеÄÖ±ÏßEQ½âÎöʽΪy=-x+1£¬½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$£¬¼´¿ÉµÃ³öµãQµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡à$\left\{\begin{array}{l}{-1+b+c=0}\\{-9+3b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3£»
£¨2£©Èçͼ1£¬ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖáÓÚH£¬
ÔòS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC
=$\frac{1}{2}$£¨-t2+2t+3+3£©t+$\frac{1}{2}$£¨3-t£©£¨-t2+2t+3£©-$\frac{1}{2}$¡Á3¡Á3
=-$\frac{3}{2}$t2+$\frac{9}{2}$t
=-$\frac{3}{2}$£¨t-$\frac{3}{2}$£©2+$\frac{27}{8}$£¬
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±t=$\frac{3}{2}$ʱ£¬Dµã×ø±êÊÇ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£¬¡÷BCDÃæ»ýµÄ×î´óÖµÊÇ$\frac{27}{8}$£»
£¨3£©Èçͼ2£¬ÉèPMÓëxÖá½»ÓÚµãE£¬
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡àPµãµÄ×ø±êΪ£¨1£¬4£©£¬EµãµÄ×ø±êΪ£¨1£¬0£©£®
¡ßB£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡àµ±x=1ʱ£¬y=2£¬
¡àMµãµÄ×ø±êΪ£¨1£¬2£©£¬
¡àPM=ME=2£¬BMΪ¡÷BPEµÄÖÐÏߣ¬
¡àS¡÷PMB=S¡÷EMB£®
¹ýE×÷BCµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚµãQ£¬ÔòS¡÷QMB=S¡÷EMB£¬
¡àS¡÷QMB=S¡÷PMB£®
¡ßE£¨1£¬0£©£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬EQ¡ÎBC£¬
¡àÖ±ÏßEQµÄ½âÎöʽΪy=-x+1£®
ÓÉ$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=\frac{3-\sqrt{17}}{2}}\\{y=\frac{\sqrt{17}-1}{2}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=\frac{3+\sqrt{17}}{2}}\\{y=-\frac{1+\sqrt{17}}{2}}\end{array}\right.$£¬
¡àµãQµÄ×ø±êΪQ1£¨$\frac{3-\sqrt{17}}{2}$£¬$\frac{\sqrt{17}-1}{2}$£©£¬Q2£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬
¡àÔÚÖ±ÏßBCÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¬´ËʱµãQµÄ×ø±êΪQ1£¨$\frac{3-\sqrt{17}}{2}$£¬$\frac{\sqrt{17}-1}{2}$£©£¬Q2£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£®
µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý¡¢Ò»´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬Èý½ÇÐΡ¢ÌÝÐεÄÃæ»ý£¬½âÎöʽƽÒƵĹæÂÉ£¬Ö±ÏßÓëÅ×ÎïÏߵĽ»µã×ø±êÇ󷨣¬ÄѶÈÊÊÖУ®½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ£»£¨2£©ÉèDµã×ø±êΪ£¨t£¬-t2+2t+3£©£¬ÀûÓø·¨Çó³öS¡÷BCD¹ØÓÚtµÄ¶þ´Îº¯Êý½âÎöʽ£»£¨3£©ÕÒµ½QµÄλÖã¬Çó³öÖ±ÏßEQµÄ½âÎöʽ£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | x2-4=£¨x+4£©£¨x-4£© | B£® | x2-2x-15=£¨x+3£©£¨x-5£© | C£® | 3mx-6my=3m£¨x-6y£© | D£® | 2x+4=2£¨x+4£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | x¡Ü3 | B£® | x¡Ý3 | C£® | x¡Ý-3 | D£® | x¡Ü0 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com