精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点在原点,对称轴是y轴,且经过点(-2,2),则此抛物线的表达式是
y=
1
2
x2
y=
1
2
x2
分析:根据图象顶点为原点得到抛物线的c值为0,再由对称轴为y轴,得到b=0,设出适当的表达式,把(2,-2)代入设出的表达式中,求出a的值,即可确定出抛物线的表达式.
解答:解:∵抛物线的顶点在原点,对称轴是y轴,
∴设此抛物线的表达式是y=ax2
把(-2,2)代入y=ax2中得:2=4a,解得:a=
1
2

则此抛物线的表达式是y=
1
2
x2
故答案为:y=
1
2
x2
点评:此题考查了待定系数法求二次函数的解析式,解答本题的关键是设出适当的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).

(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是
正方形
正方形
,请说明理由;
(2)如图2,已知D(-
12
,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;
(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A-B-C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年广西桂林市中考数学试卷(解析版) 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广西桂林卷)数学(解析版) 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(﹣2,0),(2,0).

(1)直接写出抛物线解析式;

(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.

①当直线OD与以AB为直径的圆相切于E时,求此时k的值;

②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案