精英家教网 > 初中数学 > 题目详情
已知抛物线y=
3
3
x2-
4
3
3
x+
3
与y轴交于点A,与x轴交于B、C两点(C在B的左边).
(1)过A、O、B三点作⊙M,求⊙M的半径;
(2)点P为弧OAB上的动点,当点P运动到何位置时△OPB的面积最大?求出此时点P的坐标及△OPB的最大面积.
(1)∵抛物线y=
3
3
x2-
4
3
3
x+
3
与y轴交于点A,与x轴交于B、C两点(C在B的左边),
∴y=0时,0=
3
3
x2-
4
3
3
x+
3

整理得出:x2-4x+3=0,
解得:x1=1,x2=3,
当x=0,则y=
3

由题意可得:A(0,
3
),B(3,0),C(1,0),
∴OA=
3
,OB=3,
连接AB,∵∠AOB=90°,
∴AB为⊙M的直径,
∴AB=2
3

∴⊙M的半径为
3


(2)在△AOB中,∵OA=
3
,OB=3,∠AOB=90°,
∴tan∠OAB=
3
3
=
3

∴∠OAB=60°,
∵点P为弧OAB上的动点,
∴∠OPB=60°,
∵OB=3是定值,要使△OPB面积最大,只要使OB边上的高最大,
即点P到OB边的距离最大,
∴点P为为弧OAB的中点,此时为△OPB为等边三角形,
且边长为3,
过点P作PT⊥OB于点T,
根据题意得出:OT=
3
2
,PT=
3
3
2

∴P(
3
2
3
3
2
),△OPB的最大面积为:
1
2
×3×
3
3
2
=
9
3
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+mx+n经过点A(1,0),B(6,0).
(1)求抛物线的解析式;
(2)抛物线与y轴交于点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2
3
,直线y=
3
x-2
3
经过点C,交y轴于点G.
(1)点C、D的坐标分别是C______,D______;
(2)求顶点在直线y=
3
x-2
3
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
3
x-2
3
平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
2
x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=
3
,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,若点A的坐标是(1,0),点B在点A的右侧.
(1)c=______;
(2)求a的取值范围;
(3)若过点C且平行于x轴的直线交该抛物线于另一点D,AD、BC交于点P,记△PCD的面积为S1,△PAB的面积为S2,求S1-S2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知四边形ABCD是等腰梯形,A、B在x轴上,D在y轴上,ABCD,AD=BC=
17
,AB=5,CD=3,抛物线y=-x2+bx+c过A、B两点.
(1)求b、c;
(2)设M是x轴上方抛物线上的一动点,它到x轴与y轴的距离之和为d,求d的最大值;
(3)当(2)中M点运动到使d取最大值时,此时记点M为N,设线段AC与y轴交于点E,F为线段EC上一动点,求F到N点与到y轴的距离之和的最小值,并求此时F点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植某种蔬菜,由市场行情分析可知,1月份到6月份这种蔬菜的市场售价p(元/千克)与上市时间x(月份)的关系为p=-1.5x+12,这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线一部分,如图所示.
(1)若图中抛物线经过A、B两点,对称轴是直线x=6,写出它对应的函数关系式;
(2)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值是多少?
(收益=市场售价-种植成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.

查看答案和解析>>

同步练习册答案