精英家教网 > 初中数学 > 题目详情

(本小题满分14分)已知二次函数
(1)当时,函数值的增大而减小,求的取值范围。
(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线轴交点的横坐标均为整数,求整数的值。

解:(1)∵
∴由题意得,
(2)根据抛物线和正三角形的对称性,可知轴,设抛物线的对称轴与交于点

。设



       ∴

定值
(3)令,即时,有

由题意,为完全平方数,令

为整数,     ∴的奇偶性相同
解得综合得

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25.(本小题满分14分)

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

① 试求平移后的抛物线的解析式;

② 试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年广东省萝岗区初中毕业班综合测试数学卷 题型:解答题

(本小题满分14分)
如图1,抛物线y轴交于点AE(0,b)为y轴上一动点,过点E的直线与抛物线交于点BC.
 
【小题1】(1)求点A的坐标;
【小题2】(2)当b=0时(如图2),求的面积。
【小题3】(3)当时,的面积大小关系如何?为什么?
【小题4】(4)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(内蒙古赤峰卷)数学 题型:解答题

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

①  试求平移后的抛物线的解析式;

②  试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案