【题目】解方程:
(1)3x2+8x-3=0;(2)x2+3x-1=0;(3)x2-2x-3=0;(4)(x+4)2=5(x+4)
【答案】(1)x1,x2=﹣3;(2),;(3)x1=-1,x2=3;(4)x1=-4,x2=1.
【解析】
(1)利用因式分解法解方程即可;
(2)直接利用求根公式法解方程即可;
(3)利用因式分解法解方程即可;
(4)把方程右边移到等号左边,然后利用因式分解法求解即可.
(1)(3x-1)(x+3)=0,∴3x-1=0或x+3=0,∴x1,x2=﹣3;
(2)a=1,b=3,c=-1,△=9+4=13>0,∴x=,∴,;
(3)∵(x+1)(x-3)=0,∴x+1=0或x﹣3=0,∴x1=-1,x2=3;
(4)∵(x+4)2-5(x+4)=0,∴(x+4) [(x+4)﹣5]=0,∴x+4=0或(x+4)﹣5=0,∴x1=-4,x2=1.
科目:初中数学 来源: 题型:
【题目】如图所示,在边长为4正方形OABC中,OB为对角线,过点O作OB的垂线.以点O为圆心,r为半径作圆,过点C做⊙O的两条切线分别交OB垂线、BO延长线于点D、E,CD、CE分别切⊙O于点P、Q,连接AE.
(1)请先在一个等腰直角三角形内探究tan22.5°的值;
(2)求证:
①DO=OE;
②AE=CD,且AE⊥CD.
(3)当OA=OD时:
①求∠AEC的度数;
②求r的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.
(1)计算古树BH的高;
(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1∶2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为37°,则二楼的层高BC约为(精确到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( )
图1 图2
A. 4米 B. 3.6米 C. 2.2米 D. 4.6米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD中,如图,对角线AC和BD相交于点O,AC=10,BD=8.
(1)若AC⊥BD,试求四边形ABCD的面积;
(2)若AC与BD的夹角∠AOD=60°,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农户承包荒山种植某产品种蜜柚已知该蜜柚的成本价为8元千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量千克与销售单价元千克之间的函数关系如图所示.
求y与x的函数关系式,并写出x的取值范围;
当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com