精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径OA=5,弦AC的长是6.
①求DE的长;
②请直接写出
DFAF
的值.
分析:(1)连接OD,由AD是∠BAC的平分线得∠EAD=∠DAO,而∠DAO=∠ADO,则∠EAD=∠ADO,根据平行线的判定得到OD∥AE,而DE⊥AC,所以OD⊥DE,然后根据切线的判定定理即可得到结论;
(2))①过O作OH⊥AC交AC于H,根据垂径定理得AH=CH=
1
2
AC=3,再利用勾股定理可计算出OH=4,由于∠ODE=∠DEH=∠OHE=90°,可得到四边形ODEH是矩形,
根据矩形性质得DE=OH=4;
②由OD∥AE可得到△ODF∽△AEF,则
DF
AF
=
OD
AE
,然后把OD与AE的值代入即可.
解答:解:(1)连接OD,如图,
∵AD是∠BAC的平分线,
∴∠EAD=∠DAO,
∵AO=DO,
∴∠DAO=∠ADO,
∴∠EAD=∠ADO,
∴OD∥AE,
又∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;

(2)①过O作OH⊥AC交AC于H,如图,
则AH=CH=
1
2
AC=3,
在Rt△AOH中,AH=3,OA=5,
∴OH=
OA2-AH2
=4,
∵∠ODE=∠DEH=∠OHE=90°,
∴四边形ODEH是矩形,
∴DE=OH=4;
②∵OD∥AE,
∴△ODF∽△AEF,
DF
AF
=
OD
AE

而OD=5,AE=AH+HE=AH+OD=3+5=8,
DF
AF
=
5
8
点评:本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、矩形的判定与性质以及三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案