精英家教网 > 初中数学 > 题目详情

【题目】如图,点EF分别为菱形ABCDADCD的中点.

1)求证:BE=BF

2)当△BEF为等边三角形时,求证:∠D=2A.

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1)根据菱形的性质得到AB=CBAD=CDA=C再根据中点的定义得到AE=CF根据SAS可证△BAE≌△BCF根据全等三角形的性质得到BE=BF即可

2)作辅助线先根据线段垂直平分线的逆定理证明BDEF的垂直平分线由等边三角形三线合一得EG=FGEBG=EBF=30°,EG=xBE=2xBG=x根据中位线定理得AO=2EG=2xOB=x证明△BHO∽△BEG列比例式可得OH= BH=x再求AH=xAH=BH可得∠DAB=60°,ADC=120°,从而得出结论.

试题解析证明:(1∵四边形ABCD是菱形∴∠A=CAB=BC=AD=CD∵点EF分别为菱形ABCDADCD的中点AE=ADCF=CDAE=CF∴△ABE≌△CBFSAS),BE=BF

2)如图连接ACBD交于点OBDEF交于GACBE交于HACBDBE=BFED=DFBDEF的垂直平分线EG=FGEBG=EBF=30°,RtBEGEG=xBE=2xBG=xEGAOEAD的中点GOD的中点AO=2EG=2xOB=xOHGE∴△BHO∽△BEG==OH= BH=xAH=AOOH=2xx=xAH=BH∴∠HAB=ABH∵∠BHC=HAB+∠ABH=60°,∴∠HAB=30°,∴∠DAB=60°,∴∠ADC=120°,∴∠ADC=2DAB即∠D=2A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一个汉字“互”字,其中,ABCD,∠1=2,∠MGH=MEF.

求证:∠MEF=GHN.

证明:∵ ABCD(已知)

∴∠1=3

又∵∠1=2(已知)

∴∠2=3

MEHN

∴∠MGH= ( )( )

又∵∠MGH=MEF (已知)

∴∠MEF=GHN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有两点AB,点B在点A的右侧,且AB10,点A表示的数为﹣6.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动.

(1)写出数轴上点B表示的数;

(2)经过多少时间,线段APBP的长度之和为18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个花坛的形状如图所示,它的两端是半径相等的半圆,求:

(1)花坛的周长l

(2)花坛的面积S

(3)a8mr5m,求此时花坛的周长及面积3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人为了解他所在地区的旅游情况,收集了该地区2014年到2017年每年旅游收入的有关数据,整理并绘制成折线统计图,根据图中信息,回答下列问题:

(1)该地区2014年到2017年四年的年旅游平均收入是多少亿元;

(2)从折线统计图中你能获得哪些信息?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:

(1)本次调查学生共   人,a=   ,并将条形图补充完整;

(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?

(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中, 对角线ACBD相交于点O. EF是对角线AC上的两个不同点,当EF两点满足下列条件时,四边形DEBF不一定是平行四边形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠AOB是直角,∠AOC=40°ON∠AOC的平分线,OM∠BOC的平分线.

1)求∠MON的大小.

2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,同学们遇到这样一个问题:

如图1,已知 分别是 的角平分线,请同学们根据题中的条件提出问题,大家一起来解决(本题出现的角均小于平角)

同学们经过思考后,交流了自己的想法:

小强说:如图2,若重合,且时,可求的度数.

小伟说:在小强提出问題的前提条件下,将边从边开始绕点逆时针

转动,可求出的值.

老师说:在原題的条件下,借助射线的不同位置可得出的数量关系.

(1)请解决小强提出的问题;

(2)在备用图1中,补充完整的图形,并解决小伟提出的问题

(3)在备用图2中,补充完整的图形,并解决老师提出的问题,即求三者之间的的数量关系.

查看答案和解析>>

同步练习册答案