精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥CD,AD=BC=2,∠A=60°,BD平分∠ABC,则这个梯形的周长是____.
10

分析:根据平行线的性质推出∠CDB=∠DBA,得出∠CDB=∠CBD,推出DC=BC,过D作DE∥BC交AB于E,推出四边形DEBC是平行四边形,得出DC=BE,DE=BC,∠DEA=∠CBA,证△ADE是等边三角形,求出AE即可.

解:∵DC∥AB,
∴∠CDB=∠DBA,
∵BD平分∠ABC,
∴∠CBD=∠DBA,
∴∠CDB=∠CBD,
∴DC=BC=2cm,
过D作DE∥BC交AB于E,
∵DC∥AB,DE∥BC,
∴四边形DEBC是平行四边形,
∴DC=BE,DE=BC,∠DEA=∠CBA,
∵DC∥AB,AD=BC,
∴∠A=∠CBA=∠DEA=60°,
∴AD=DE,
∴△ADE是等边三角形,
∴AE="AD=2" ,
∴这个梯形的周长是AB+BC+CD+AD="2" +2 + 2 + 2 +2 =10,
故答案为:10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•北京)阅读下面材料:
小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.

小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:
如图3,△ABC的三条中线分别为AD,BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一个多边形的每个外角都等于,则它的边数是
A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题8分)如图,四边形中,平分.

(1)求证:四边形是菱形;
(2)若点的中点,试判断的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图,正方形中,的中点,,交于点,交于点,连接。有如下结论:①;②;③;④;⑤。其中正确的结论的个数为( )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形的对角线相交于点请你添加一个条件:   ,使其为正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AD∥BC,AB = CD,,BD平分,如果这个梯形的周长为30,则AB的长为(   )
A.4B.5 C.6D.7

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在长方形中,的中点,连接并延长交的延长线于点,则图中全等的直角三角形共有                   (     )
A.3对B.4对C.5对D.6对

查看答案和解析>>

同步练习册答案