精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
(3)若点P为第一象限抛物线上一动点,连接BP、PE,求四边形ABPE面积的最大值,并求此时P点的坐标.
(1)∵抛物线与y轴交于点(0,3),
∴设抛物线解析式为y=ax2+bx+3,
根据题意得:
a-b+3=0
9a+3b+3=0

解得:
a=-1
b=2

∴抛物线的解析式是y=-x2+2x+3.
解法二、∵设解析式是y=a(x-3)(x+1),
把B(0,3)代入得:3=a(0-3)(0+1),
a=-1,
即y=-1(x-3)(x+1)=-x2+2x+3,
∴抛物线的解析式是y=-x2+2x+3.

(2)相似,
证明:过D作DF⊥x轴于F,过B作BG⊥DF于G,
如图,BD=
BG2+DG2
=
12+12
=
2
,BE=
BO2+OE2
=
32+32
=3
2

DE=
DF2+EF2
=
22+42
=2
5

∴BD2+BE2=20,DE2=20,
∴DB2+BE2=DE2
∴△BDE是直角三角形,
∴∠AOB=∠DBE=90°,且
AO
BD
=
BO
BE
=
2
2

∴△AOB△DBE.

(3)设点P的坐标为(x,y),过P作PQ⊥X轴于Q,
SABPE=S△ABO+SBOQP+S△PQE=
1
2
×1×3+
1
2
×(3+y)×x+
1
2
×y×(3-x)
=-
3
2
x2+
9
2
x+6=-
3
2
(x-
3
2
)2+9
3
8

x=
3
2
时,四边形ABPE面积最大,
此时,点P的坐标为(
3
2
15
4
)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2口口少•荆门)9开4向上4抛物线与x轴交于g(m-2,口),B(m+2,口)两点,记抛物线顶点为C,且gC⊥BC.
(你)若m为常数,求抛物线4解析式;
(2)若m为小于口4常数,那么(你)中4抛物线经过怎么样4平移可以使顶点在坐标原点;
(右)设抛物线交三轴正半轴于下点,问是否存在实数m,使得△BO下为等腰三角形?若存在,求出m4值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=4x-
1
2
x2
刻画,斜坡可以用一次函数y=
1
2
x
刻画.
(1)求小球到达的最高点的坐标;
(2)小球的落点是A,求点A的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在第一象限内,以
5
为半径的圆⊙M经过点A(-1,0),B(3,0),与y轴相交于点C.
(1)在所给的坐标系中作出⊙M,并求M点的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)若D为⊙M上的最低点,E为x轴上的任一点,则在抛物线上是否存在这样的点F,使得以点A、D、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙,其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m的栅栏、设每间羊圈的长为xm.
(1)请你用含x的关系式来表示围成三间羊圈所利用的旧墙的总长度L=______,三间羊圈的总面积S=______;
设宽为x,(2)S可以看成x的______,这里自变量x的取值范围是______;
(3)请计算,当羊圈的长分别为2m、3m、4m和5m时,羊圈的总面积分别为______m2、______m2______m2、______m2,在这些数中,x取______m时,面积S最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

同步练习册答案