分析 (1)先根据等式性质证明∠BAQ=∠GAQ,再由垂直得∠BQA=∠AQG=90°,则∠ABG=∠AGB,所以AB=AG;
(2)先证明△APG∽△EPB,得$\frac{AP}{PE}=\frac{AG}{BE}$,求出AP的长,就是AH的长;再证明△AHG∽△CHB,得$\frac{AH}{CH}=\frac{AG}{BC}$,求出CH=$\sqrt{2}$AH,得出结论.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴∠ABE=∠D=45°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠BAE=45°,
同理∠CAD=45°,
∵AF平分∠EAC,
∴∠EAF=∠CAF,
∴∠BAQ=∠GAQ,
∵AF⊥BG,
∴∠BQA=∠AQG=90°,
∴∠ABG=∠AGB,
∴AB=AG;
(2)∵四边形ABCD是平行四边形,
∴AG∥BE,
∴∠GAP=∠BEP,∠AGP=∠PBE,
∴△APG∽△EPB,
∴$\frac{AP}{PE}=\frac{AG}{BE}$,
由(1)得△ABE是等腰直角三角形,
∴AB=$\sqrt{2}$BE,
∴AB=AG=$\sqrt{2}$BE,
∴$\frac{AP}{PE}$=$\frac{\sqrt{2}BE}{BE}$=$\sqrt{2}$,
∵PE=6,
∴AP=6$\sqrt{2}$,
同(1)得AP=AH=6$\sqrt{2}$,
∵△AHG∽△CHB,
∴$\frac{AH}{CH}=\frac{AG}{BC}$,
∵△ACD也是等腰直角三角形,
∴AD=$\sqrt{2}$CD,
∵AD=BC,AB=CD=AG,
∴BC=$\sqrt{2}$AG,
∴$\frac{AH}{CH}$=$\frac{AG}{\sqrt{2}AG}$=$\frac{1}{\sqrt{2}}$,
∴CH=$\sqrt{2}$AH=$\sqrt{2}$×6$\sqrt{2}$=12.
点评 本题考查了平行四边形的性质,明确平行四边形对边相等且平行,对角相等;根据45°和垂直得到等腰直角三角形,从而得出等腰直角三角形的斜边是直角边的$\sqrt{2}$倍,这一结论经常运用,要熟练掌握.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com