精英家教网 > 初中数学 > 题目详情

如图,DE是⊙O的直径,弦AB⊥ED于C,连接AE、BE、AO、BO.则图中全等三角形的对数有


  1. A.
    3对
  2. B.
    2对
  3. C.
    1对
  4. D.
    0对
A
分析:根据垂径定理由DE是直径,AB⊥ED,得到EC⊥AB,AC=BC,证出△ACO≌△BCO,△ACE≌△BCE,推出∠AEO=∠BEO,AE=BE,证出△AEO≌△BEO,即可得到答案.
解答:∵DE是直径,AB⊥ED,
∴EC⊥AB,AC=BC,
∴∠ACE=∠BCE=90°,
∵OC=OC,CE=CE,
∴△ACO≌△BCO,△ACE≌△BCE,
∴∠AEO=∠BEO,AE=BE,
∵OE=OE,
∴△AEO≌△BEO,
故选A.
点评:本题主要考查对垂径定理,垂线的定义,全等三角形的判定等知识点的理解和掌握,能求出EC⊥AB,AC=BC是证此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是(  )

查看答案和解析>>

科目:初中数学 来源:2012年10月中考数学模拟试卷(9)(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2012年重庆市开县西街中学中考数学一模试卷(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市开县西街中学九年级模拟考试数学试卷(一)(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案