精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为弓形AB的弦,AB2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____

【答案】

【解析】

连接OBOA,过O,得到,求得,连接IAIB,根据角平分线的定义得到,根据三角形的内角和得到,设ABI三点所在的圆的圆心为,连接,得到,根据等腰三角形的性质得到,连接,解直角三角形得到,根据弧长公式即可得到结论.

解:连接OBOA,过O

Rt中,

连接IAIB

I的内心,

P为弧AB上动点,

始终等于

I在以AB为弦,并且所对的圆周角为的一段劣弧上运动,

ABI三点所在的圆的圆心为

连接

连接

I移动的路径长

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30下列四个结论:①OABCBC=cmcosAOB=④四边形ABOC是菱形. 其中正确结论的序号是(

A. ①③ B. ①②③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是菱形的对角线,分别是边的中点,连接,则下列结论错误的是( )

A. B. C. 四边形是菱形D. 四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2mx+m2+1(m为常数),当自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最小值为5,则m的值为(  )

A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.

1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;

2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?

3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(x2)(x3=m有实数根x1,x2,且x1≠x2,有下列结论:

①x1=2x2=3

二次函数y=xx1)(xx2)+m的图象与x轴交点的坐标为(20)和(30).

其中,正确结论的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:梯形ABCD中,AD//BCABBCAD=3AB=6DFDC分别交射线AB、射线CB于点EF.

1)当点E为边AB的中点时(如图1),求BC的长;

2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;

3)当AEF的面积为3时,求DCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①②,在平面直角坐标系xoy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦, , Px轴上的一动点,连结CP。

(1)求的度数;

(2)如图①,当CP与⊙A相切时,求PO的长;

(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,是等腰三角形?

查看答案和解析>>

同步练习册答案