【题目】二青会开幕式期间,出租车司机李师傅营运时是在南北走向的滨河西路上行进的,如果规定向南为正,向北为负,他这天上午所接位乘客的行车里程(单位:)为:,,,,,.(假设相邻两位乘客上下车没有时间间隔)
(1)试判断李师傅将最后一位乘客送到目的地时,他在出发点的什么方向,距离出发地多少千米?
(2)若汽车耗油量为,则这天上午李师傅接送乘客时出租车共耗油多少升?
(3)若出租车起步价为元,起步里程为(包括),超过部分每千米元,问李师傅这天上午共得车费多少元?
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD、DE,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于给定的两个“函数,任取自变量x的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为.
(1)一次函数y= -x+5的相关函数为______________.
(2)已知点A(b-1,4),点B坐标(b+3,4),函数y=3x-2的相关函数与线段AB有且只有一个交点,求b的取值范围.
(3)当b+1≤x≤b+2时,函数y=-3x+b-2的相关函数的最小值为3,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,过C作CE⊥AD垂足为E,且∠EDC=∠BDC.
(1)求证:CE是⊙O的切线;
(2)若DE+CE=4,AB=6,求BD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点B(8,0)和点C(9, ).抛物线(a,c是常数,a≠0)经过点B、C,且与x轴的另一交点为A.对称轴上有一点M ,满足MA=MC.
(1)求这条抛物线的表达式;
(2)求四边形ABCM的面积;
(3)如果坐标系内有一点D,满足四边形ABCD是等腰梯形,且AD//BC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点的三角形叫格点三角形),
(1)请画出△ABC关于y轴对称的格点△A1B1C1,
(2)请判断△A1B1C1与△DEF是否相似,若相似,请写出相似比;若不相似,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com