【题目】如图(1), 点为直线上一点,过点作射线, 将一直角的直角项点放在点处,即反向延长射线,得到射线.
(1)当的位置如图(1)所示时,使,若,求的度数.
(2)当的位置如图(2)所示时,使一边在的内部,且恰好平分,
问:射线的反向延长线是否平分请说明理由:注意:不能用问题中的条件
(3)当的位置如图所示时,射线在的内部,若.试探究与之间的数量关系,不需要证明,直接写出结论.
【答案】为;平分,理由见解析;
【解析】
(1)∠NOB+∠BOC+∠COD=180°,根据题目已知条件代入即可求解;
(2) ∠MON=∠MOD=90°,利用互余的性质可以得出∠DOC=∠BON,由对顶角的性质得出∠BON=∠AOD,即可得出结果;
(3)根据∠BOC=120°,得出∠AOC=60°,再利用∠MON-∠AOC=30°即可得出结论.
解:(1)∵∠NOB=20°,∠BOC=120°
∠NOB+∠BOC+∠COD=180°
∴∠COD=180°-20°-120°=40°
(2)OD平分∠AOC
∵∠MON=∠MOD=90°
∴∠DOC+COM=∠MOB+∠BON
∵OM平分∠BOC
∴∠COM=∠MOB
∴∠DOC=∠BON
∵∠BON=∠AOD(对顶角相等)
∴∠AOD=∠DOC
∴OD平分∠AOC
(3)∵∠BOC=120°
∴∠AOC=180°-120°=60°
∵∠MON=90°
∴∠MON-∠AOC=30°
∴∠AOM+∠AON-∠AON-∠NOC=30°
∴∠AOM-∠NOC=30°
科目:初中数学 来源: 题型:
【题目】己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.
(1)求证:BE=DF;
(2)若,求证:四边形BEFG是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.
(1)求一次函数的表达式;
(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)请你帮助学校设计所有可行的租车方案.
(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1, 点在直线上, ,将.绕着点以的速度逆时针旋转,设旋转时间为.
(1)如图2,当平分时,______; 图中的补角有: ______;
(2)如图3,当时,平分, 平分,求的度数;
(3)在绕着点逆时针旋转的过程中,当______时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数表达式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.
①若∠MBC=90°,求点P的坐标;
②若△PQB的面积为,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)k的值是______;
(2)当t=4时,求△BMN面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150≤x<175范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:
根据统计图表提供的信息,下列说法中
①抽取男生的样本中,身高在155≤x<165之间的学生有18人;
②初一学生中女生的身高的中位数在B组;
③抽取的样本中,抽取女生的样本容量是38;
④初一学生身高在160≤x<170之间的学生约有800人.
其中合理的是
A. ①② B. ①④ C. ②④ D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com