精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-2(k+1)x+k2+2k-
5
4
=0 ①.
(1)求证:对于任意实数k,方程①总有两个不相等的实数根;
(2)如果a是关于y的方程y2-(x1-k-
1
2
)y
+(x1-k)(x2-k)+
1
4
=0 ②的根,其中x1、x2为方程①的两个实数根,且x1<x2,求代数式(
1
a
-
a
a+1
4
a+1
•(a2-1)
的值.
(1)证明:∵△=[-2(k+1)]2-4×(k2+2k-
5
4
),
=4k2+8k+4-4k2-8k+5,
=9>0,
∴对于任意实数k,方程①总有两个不相等的实数根;

(2)∵x1<x2
∴x1=
2(k+1)-
9
2×1
=k-
1
2

∴x1-k-
1
2
=k-
1
2
-k-
1
2
=-1,
又∵x1+x2=-
b
a
=2(k+1),x1•x2=
c
a
=k2+2k-
5
4

∴(x1-k)(x2-k)+
1
4

=x1•x2-k(x1+x2)+k2+
1
4

=k2+2k-
5
4
-2k(k+1)+
1
4

=k2+2k-
5
4
-2k2-2k+k2+
1
4

=-1,
∴关于y的方程为y2+y-1=0,
∵a是方程的解,
∴a2+a-1=0,
∴1-a2=a,
(
1
a
-
a
a+1
4
a+1
•(a2-1)
=
a+1-a2
a(a+1)
×
a+1
4
×(a2-1)=
2a
a(a+1)
×
a+1
4
×(a2-1)=-
1
2
a,
根据求根公式可得a=
-1±
1+4
2
=
-1±
5
2

∴-
1
2
a=-
1
2
×
-1±
5
2
=
5
4

故代数式的值为
1+
5
4
1-
5
4
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案